
FEP Analysis for Disposal of Depleted Uranium at the Clive Facility

5 June 2014<mark>28 May 2014</mark>

Prepared by
NEPTUNE AND COMPANY, INC.
1505 15th St, Suite B, Los Alamos, NM 87544

1. Title: FEP Analysis	1. Title: FEP Analysis for Disposal of Depleted Uranium at the Clive Facility					
2. Filename: Clive DU	2. Filename: Clive DU PA FEP Analysis.pdf					
3. Description: This d	ocuments the development an	d analysis of features.	events, and processes			
			evenus, and processes			
for disposal of dep	eted uranium at the Clive, Ut	an Facility.				
	Name		Date			
4. Originator	Jenifer Linville		28 May 2011			
5. Reviewer <u>John Tauxe</u> <u>28 May 2014</u>						
6. Remarks						

CONTENTS

TABLES
1.0 Introduction
2.0 Identification of Features, Events, and Processes
2.1 Compilation of FEPs
2.2 Normalization and Consolidation of FEPs
3.0 Classifying Features, Events, and Processes
4.0 Screening of FEPs
4.1 Regulatory Considerations, Guidance, and Supporting Information
4.1.1 Nuclear Regulatory Commission: 10 CFR 61
4.1.2 Utah Administrative Code R313: Radiation Control
4.1.3 Additional Guidance
4.2 Scope of Assessment and Physical Reasonableness
5.0 Screening Results
6.0 Use of FEPs for Conceptual Model and Scenario Development
7.0 References 12
Appendix: FEP Listings14

TABLES

Table 1. List of Initial FEPs by Reference	.14
Table 2. List of consolidated FEPs evaluated for inclusion in the conceptual site model and	
scenarios <u>47</u>	135
Table 3. List of FEPs dismissed from further consideration.	543

1.0 Introduction

The safe storage and disposal of depleted uranium (DU) waste is essential for mitigating releases of radioactive materials and reducing exposures to humans and the environment. Currently, a radioactive waste facility located in Clive, Utah (the "Clive facility") operated by Energy Solutions is proposed to receive and store DU waste that has been declared surplus from radiological facilities across the nation. The Clive facility has been tasked with disposing of the DU waste in an economically feasible manner that protects humans from radiological releases.

To assess whether that the proposed Clive facility DU disposal location and containment technologies are suitable for protection of human health, specific performance objectives for land disposal of radioactive waste set forth in Title 10 Code of Federal Regulations Part 61 (10 CFR 61) Subpart C, promulgated by the U.S. Nuclear Regulatory Commission (NRC), must be met. In order to support the required radiological performance assessment (PA), a detailed computer model is being developed to evaluate the potential detrimental effects on human health that would result from the disposal of DU and its associated radioactive contaminants.

A key activity in developing a PA for a radiological waste repository is the comprehensive identification of relevant external factors that should be included in quantitative analyses. These factors, termed "features, events, and processes" (FEPs), form the basis for scenarios that are evaluated to assess site performance.

Although it is not a governing regulation for the disposal of LLW and DU at Clive, Title 40 CFR Part 191, promulgated by the U.S. Environmental Protection Agency (EPA), provides a useful and general definition for the scope of a PA analysis of a radiological disposal facility. The PA 1) identifies the processes and events that might affect the disposal system, 2) examines the effects of these processes and events on the performance of the disposal system, and 3) estimates the cumulative releases of radionuclides considering the associated uncertainties caused by all significant processes and events (40 CFR 191). The identification of FEPs is essential to the development of the conceptual site model (CSM) and model scenario development process (see *Conceptual Site Model for Disposal of Depleted Uranium at the Clive Facility* white paper).

This report serves to document and examine the universe of FEPs that may apply to the disposal of depleted uranium (DU) waste at the Clive Facility. FEPs that are screened and identified as relevant for the Clive facility PA are identified in this white paper and are further elaborated in the CSM documentwhite paper.

This document is considered to be a living document that is synchronized with current conceptual models, analysis, and modeling of the PA. As concepts and modeling evolve, so too will this document.

2.0 Identification of Features, Events, and Processes

The identification of FEPs for use in the Clive facility PA-DU PA Model was an iterative process that began with compiling an exhaustive list of candidate FEPs that could affect the long-term

Formatted: Font: Not Italic

performance of the radiological waste repository. As an initial step, all potentially relevant FEPs from a variety of reference sources were collected. The initial list from external sources was modified as additional FEPs were identified that are specific to the Clive facility.

This exhaustive initial compilation of FEPs led to significant redundancy across the original sources. Redundancy was addressed by the modification of the candidate list of FEPs through normalization (removal of redundant FEPs) and assignment of FEPs categories (grouping of common FEPs). This section describes the FEP identification process, including implementation of the normalization, categorization and screening processes.

2.1 Compilation of FEPs

The initial list of FEPs pertaining to the efficacy of disposal of radioactive wastes in general was compiled from several scenario development documents published for other nuclear waste disposal facilities, including those for Yucca Mountain Project, the Waste Isolation Pilot Plant, and several foreign radioactive waste projects. The primary literature source for FEP analysis is Guzowski and Newman (1993). They compiled over 700 potentially disruptive FEPs from a review of scenario documentation from other waste repositories around the world.

The facilities considered in Guzowski and Newman have substantially different geological, environmental and regulatory settings from those of the Clive facility. Consequently, the collection of FEPs in Guzowski and Newman provides a substantial list that should be considered for any PA, but they are also missing FEPs that pertain more particularly to the waste disposal facility at Clive. Site-specific understanding of the environmental and engineered attributes of the Clive facility, and the potentially affected region and population, was used to augment the initial compilation of FEPs.

Additional FEPs were also identified from the Nuclear Energy Agency database (NEA, 2000). In this initial compilation step, nearly 1,000 FEPs were identified from the literature and site-specific considerations. Initial FEPs compiled from all sources are listed in Table 1 in the Appendix.

2.2 Normalization and Consolidation of FEPs

Subsequent to the initial compilation of FEPs, steps were taken to reduce redundancy. Initially, FEPs were sorted alphabetically and duplicates were deleted. Recorded FEP values that were different only in vernacular/diction (e.g., "climate change" versus "change in climate") were normalized to capture a single primary FEP value for a series of identical or closely-related concepts.

To address duplication of FEPs where similar terminology was stated dissimilarly, initial FEPs were grouped by keyword content (e.g., "climate," "waste," "groundwater," etc.) and evaluated for possible normalization or consolidation. Where possible, FEPs were normalized to a standard terminology.

Similar but not identical FEPs were maintained, to be evaluated as part of the consolidation step. At this point, each FEP was considered for its similarity to other FEPs, so that they could be grouped into fewer classes, making the list more manageable. For example, all geochemical processes were grouped together. These would be easier to address as a group for inclusion in the CSM. Likewise, all coastal processes could be considered for exclusion as a group. For each FEP, the rationale behind its grouping was noted. No FEPs were excluded at this step, but nearly all were consolidated with others. This consolidation process reduced the total number to 135 unique FEP groupings.

3.0 Classifying Features, Events, and Processes

Following the normalization and consolidation steps, the 135 unique FEP groups were carried forward to the classification step and were considered for inclusion in the conceptual model scenarios. The classification is principally an organizational tool for the FEP analysis, although the categories identified also relate to components of the CSM. The 135 unique FEP groups were classified into the following 18 categories:

- Celestial
- Climate change
- Containerization
- Contaminant Migration
- Engineered Features
- Exposure
- Hydrology
- Geochemical
- Geological
- Human Processes
- Hydrogeological
- Marine
- Meteorology
- Model Settings
- Other Natural Processes
- Source Release
- Tectonic/Seismic/Volcanic
- Waste

These categories are relevant to the development of scenarios and are integral to the CSM for the Clive Facility. Occasionally, a FEP could have been classified into more than one category. However, the overall goal of the FEP analysis is to identify those processes that should be carried forward into the CSM, and subsequently into the modeling. Provided each FEP is identified in one of the categories, it was carried forward to the CSM. Ultimately, each FEP was

given due consideration, and the implementation of relevant FEPs in the final modeling was rather independent of the classification.

4.0 Screening of FEPs

The long list of FEPs was screened in consideration of regulatory concern and professional judgment based on physical reasonableness, probability of occurrence, severity of consequence, and assessment scope.

The most basic screening criterion is regulatory concern. Regulatory requirements for performance of EnergySolutions' Clive facility are published in 10 CFR 61 and Utah Administrative Code R313. While the mention of something that can be construed as a feature, event, or process in the text of a regulation triggers its consideration in this FEP analysis, it does not mean that the FEP must become part of the PA analysis or modeling.

A subjective element of the FEP screening process is consideration of assessment scope and physical reasonableness. Physical reasonableness is a professional judgment based on logical arguments using available data and information to support a conclusion of whether or not conditions can exist within the period of regulatory concern that will result in the occurrence of a particular event or process that affects disposal system performance. In addition to meeting screening criteria, some FEPs were retained as model parameters specifically because they pertain to scenario development itself (e.g., exposure terms).

The inclusion or dismissal of FEPs and associated rationale is documented in support of constructing the conceptual model and scenarios. The product of this screening procedure is the identification of those FEPs that, either alone or in conjunction with others, could affect the performance of the disposal system.

4.1 Regulatory Considerations, Guidance, and Supporting Information

This section discusses the regulatory language, guidance, and other supporting information to be considered in developing scenarios and conceptual models for the Clive Facility PADU PA Model. Specific considerations of NRC's land disposal performance requirements (10 CFR 61 Subpart C) are required for the PA-scenario development and are important to document as part of the FEP compilation and screening activity. In addition, observations and recommendations previously published by radioactive waste disposal facility working groups and technical advisers are also considered, although most of these are focused on geologic disposal of radioactive wastes.

Specific provisions of regulations for the operation and closure of a land-disposal LLW facility were specifically considered if they were mentioned in a regulatory document.

Based on these provisions, 55 of 135 FEPs were identified as relevant for evaluation in the conceptual model or exposure scenarios. The remaining FEPs were dismissed from further

consideration for various reasons. Some, like a direct impact from a large meteorite, are simply beyond the scope of the PA-analysis. Tsunami and other marine phenomena obviously do not apply at the Clive facility. Several FEPs from the original sources were dismissed because they apply only to geologic repositories, or to specific types of containment, like copper canisters for used nuclear fuel.

4.1.1 Nuclear Regulatory Commission: 10 CFR 61

This regulation contains Federal procedural requirements and performance objectives applicable to land disposal of radioactive waste. Specific considerations of 10 CFR 61 include attributes of facility siting, facility engineering (including post-closure stability and control), site monitoring, record-keeping, protection of health and safety, and a minimum time frame for which an assessment must be conducted to ensure long-term stability of the disposal site. The types of FEPs-objectives mentioned in 10 CFR 61 include:

- long-term effectiveness based on physical siting of the disposal unit (including site geology and hydrology),
- protection of the general population (in terms of radiological dose),
- protection of inadvertent intruders (dose),
- protection of individuals during operations (dose),
- isolation and segregation of wastes,
- limitation of releases of radionuclides via pathways in air, water, surface water, plant
 uptake, or exhumation by burrowing animals releases of radionuclides via pathways in air,
 water, surface water, plant uptake, or exhumation by burrowing animals,
- long-term stability of the disposal site,
- evaluation of engineering failures, including erosion, mass wasting, slope failure, settlement of wastes and backfill, infiltration through covers, and surface drainage,
- site monitoring requirements,
- identification of natural resources whose exploitation could result in inadvertent exposure, and
- efficacy of institutional controls.

4.1.2 Utah Administrative Code R313: Radiation Control

The Utah Administrative Code (UAC) Rules 313-15 (Standards for Protection Against Radiation) and 313-25 (License Requirements for Land Disposal of Radioactive Waste) mirror the provisions for land disposal of radioactive waste provided in 10 CFR 61. Notable performance objectives of near-surface disposal sites established of UAC Rule R313-25 include Notable technical performance objectives of near-surface disposal sites established of UAC Rule R313-25 include:

- protection of the general population,
- protection of inadvertent intruders,

Formatted: Font: Not Italic

Formatted: Font: Not Italic

- consideration of releases of radionuclides through pathways via air, water, surface water, plant update, and exhumation of burrowing animals,
- protection of individuals during operations,
- long-term stability of the disposal site,
- prevention of erosion, mass wasting, slope failure, settlement of wastes and backfill, infiltration through covers, and surface drainage,
- site monitoring requirements, and
- identification of natural resources whose exploitation could result in inadvertent exposure.

The majority of the FEPs identified as relevant under 10 CFR 61 are also applicable under UAC Rule R313-25 and are retained for analysis.

4.1.3 Additional Guidance

The NRC's PA working group has identified additional considerations in NRC's *Performance Assessment Methodology* (NRC 2000). The working group identifies two specific areas of interest in conducting a PA: pathway analysis and dose assessment.

Pathway analysis involves the mechanisms of radionuclide transfer through the biosphere to humans. These mechanisms, or transport and exposure pathways, must be identified and modeled. Pathway analysis should result in the determination of the total intake of radionuclides by the average member of the critical group. The critical group is defined as the "...group of individuals reasonably expected to receive the greatest dose from radioactive releases from the disposal facility over time, given the circumstances under which the analysis would be carried out" (NRC 2000).

Various considerations should be taken into account when analyzing the transport of radionuclides through the biosphere (to humans). These considerations should include

- modeling the movement of radionuclides through the environment and the food chain, adequately reflecting complex symbiotic systems and relationships,
- considering mechanisms of (biotic and) human uptake of radionuclides, and
- identifying usage, production, and consumption parameters, for various food products and related systems, that may vary widely, depending on regional climate conditions, local or ethnic diet, and habits.

The dose assessment requires that the dosimetry of the exposed individual be modeled. The objective of dose modeling in a LLW PA is to provide estimates of potential doses to humans, in terms of the average member of the critical group, from radioactive releases from a LLW disposal facility, after closure.

A "current conditions" philosophy is initially applied to determine which pathways are to be evaluated. That is to say that current regional land use and other local conditions in place at the

Formatted: Indent: Left: 0.39", Hanging: 0.1", Tab stops: Not at 0.8"

Formatted: Indent: Left: 0.39", Hanging: 0.1", Tab stops: Not at 0.8"

time of the analysis will strongly influence pathways that are considered to be significant. The conceptual model and scenarios must consider each of the general pathways discussed in 10 CFR 61.13. Additional pathways for consideration are published in NUREG/CR-5453 (Shipers, 1989) and NUREG-1200 (NRC, 1994). NUREG-1200 discusses example potential "scenarios by which radioactivity may be released from the disposal facility and cause the potential for radiological impacts on individuals." Shipers (1989) identifies exposure pathways, and scenarios regarding transport mechanisms that could contribute to the release of radioactive materials from the disposal facility leading to human exposure, in the context of near-surface LLW disposal.

4.2 Scope of Assessment and Physical Reasonableness

The final phase of FEP screening is the application of professional judgment in terms of the scope of the PA and the physical reasonableness of evaluating those FEPs in the CSM and scenarios. Performance objectives include protection of the general population from releases of radioactivity (10 CFR 61.41), protection of individuals from inadvertent intrusion (§61.42), and stability of the site after closure (§61.44). Assumptions of the scope of the PA include:

- Performance assessment reflects post-closure conditions. Because PA considers the site
 only after closure, consideration of the protection of individuals during operations
 (§61.43) is not within the scope of the evaluation and FEPs related to operations are not
 considered relevant to the CSM or scenarios.
- Land-use assumptions relative to human exposures post-closure are based on current conditions and likely future conditions. Therefore urban settlement, residential use, farming, and aquaculture and FEPs pertaining to these incongruous uses are not included in the CSM or scenarios because of the high concentrations of salt in the soil and groundwater of this site. However, hunting, ranching, and recreational use are considered viable scenarios.
- Intentional human intruders are not protected.

5.0 Screening Results

Using the identification and screening processes described in Sections 1 through 3, FEPs consolidated from an exhaustive list of over 900 to 135 FEPs or FEP categories. consolidation, 90 FEPs are retained for further consideration and 45 FEPs were inclusion in the PA model. All FEPs considered and retained for inclusion in the scenarios are reported in

Formatted: Indent: Left: 0.39", Hanging: 0.1", Tab stops: Not at 0.8"

<u>Table 2 Table 2</u> in the Appendix. FEPs that were considered and dismissed from evaluation in the CSM and scenarios are listed in Table 3, along with a brief rationale for their exclusion.

In summary, FEPs retained for consideration in the PA, CSM, and scenarios pertain to regulatory aspects of post-closure protection of human health and long-term stability of the disposal facility for the duration and spatial scope of the assessment period. FEPs that were dismissed from consideration in the PA include those that do not fall within the scope of the PA, were characterized as extremely unlikely to occur or having a low magnitude of consequence of affecting the performance of the repository, or were dismissed based on site-specific considerations.

6.0 Use of FEPs for Conceptual Model and Scenario Development

The CSM provides detailed descriptions of the physical environment, the engineered disposal facility, the sources and chemical forms of disposed wastes, potentially affected media, potential release pathways and exposure routes, and potential receptors. The CSM considers broad categories of FEPs that are relevant to these attributes, but individual FEPs may or may not be addressed in the CSM based on the scope of the assessment and the scenarios developed. This section identifies the FEPs that are considered for inclusion in the CSM and are addressed in the development of scenarios for the PA model. These are grouped into several categories, and listed in tabulated form in Appendix B. Those FEPs that were dismissed from consideration in the modeling are listed in Appendix C. Some FEPs may overlap or repeat between categories.

Meteorology

Frost weathering and other meteorological events (e.g., precipitation, atmospheric dispersion, resuspension) are considered in the conceptual model. Weathering may occur from frost cycles. Resuspension of particulates from surface soils allows them to be redistributed by atmospheric dispersion, which is a meteorological phenomenon. Dust devils are also possible at the site and a tornado occurred in Salt Lake City in 1999, which was the first tornado in Utah in over 100 years.

Climate change

Features, events, and processes of climate change considered in the conceptual model include effects on hydrology (including lake effects), hydrogeology, biota, and human behaviors. Lake effects include appearance/disappearance of large lakes and associated phenomena (sedimentation, wave action, erosion/inundation). Wave action, including seiches, is included in the CSM.

Hydrology

Hydrology is addressed in the conceptual model since it influences many processes in contaminant transport. Examples of FEPs considered for the conceptual model include groundwater transport, inundation, and water table changes.

Hydrogeological

Several hydrogeological FEPs were identified for consideration in the conceptual model. Groundwater transport, in both the unsaturated and saturated zones, is potentially a significant transport pathway. For some model endpoints, such as groundwater concentrations that are compared to groundwater protection levels (GWPLs), it is the only pathway of concern.

Groundwater flow and transport processes include advection-dispersion, diffusion, fluid migration, waterborne contaminant transport, changes in the flow system, recharge, water table movements, and brine interactions. Inundation of the site may occur due to changes in lakes or reservoirs, which is included in lake effects of climate change.

Geochemical

Geochemical effects include chemical sorption and partitioning between phases, aqueous solubility, precipitation, chemical stability, complexation, changes in water chemistry (redox potential, pH, Eh), fluid interactions, speciation, interactions with clays and other host materials, and leaching of radionuclides from the waste form. These processes are addressed in the model.

Other Natural Processes

The broad category of other natural processes considered for the conceptual model include ecological changes and pedogenesis (soil formation). Ecological changes are associated with catastrophic events (e.g., inundation), evolution, or climate change. Pedogenesis is expected on the cap, giving rise to vegetation growth or habitation by wildlife.

Denudation (cap erosion) may be sufficient to expose waste. Erosion of the repository resulting from pluvial, fluvial or aeolian processes can result from extreme precipitation, changes in surface water channels, and weathering. Sediment transport is an inherent aspect of erosion. Sedimentation/deposition onto the repository would also affect disposal at the site.

Note that seismic activity is unlikely to impact the Clive facility. Faults are not present within the vicinity of Clive, although effects of isostatic rebound are still possible in the Lake Bonneville area.

Engineered Features

Engineered features are intended to promote containment and inhibit migration of contaminants. Conditions potentially affecting site performance include failure of general engineered features, repository design, repository seals, material properties, and subsidence of the repository.

Containerization

Two key components of containerization were identified as FEPs: containment degradation and corrosion. Canister degradation, including fractures, fissures, and corrosion (pitting, rusting) could result in containment failure. These processes are evaluated in the conceptual model_(Conceptual Site Model Wwhite Ppaper, Section 8.1).

Formatted: Font: Italic

Waste

Attributes of waste that could influence the performance of the Clive facility include the inventory of radionuclides, physical and chemical waste forms, container performance, matrix performance, leaching, radon emanation, and other waste release mechanisms.

Source Release

Source release can result from many mechanisms, including containment failure, leaching, radon emanation, plant uptake, and translocation by burrowing animals. FEPs that fit in the category of source release include gas generation, radioactive decay and in-growth, and radon emanation.

Contaminant Migration

Contaminant migration for the CSM includes the mechanisms and processes by which radionuclides may come to be located outside of the containment unit. The following contaminant migration processes were identified for consideration in the conceptual model: resuspension, atmospheric dispersion, biotically-induced transport, contaminant transport, diffusion, dilution, advection-dispersion, dissolution, dust devils, tornados, infiltration, and preferential pathways.

Animal ingestion is part of the human exposure model, both as ingestion of fodder and feed by livestock, and ingestion of livestock by humans. Transport by atmospheric dispersion is modeled and is associated with limited resuspension, dust devils, and tornados. Modeling of biotic (plant-and animal-mediated) processes leading to contaminant transport, and the evolution of these processes in response to climate change and other influences, including bioturbation, burrowing, root development, and contaminant uptake and translocation are considered. Contaminant transport includes transport media (water, air, soil), transport processes (advection-dispersion, diffusion, plant uptake, soil translocation), and partitioning between phases. Diffusion occurs in gas and water phases. Dilution occurs when mixing with less concentrated water. Hydrodynamic dispersion is associated with water advection. Dissolution in water is limited by aqueous solubility. Transport in the gas phase includes gas generation in the waste, partitioning between air and water phases, diffusion in air and water, and radioactive decay and ingrowth. Infiltration of water through the cap, into wastes, and potentially to the groundwater is another contaminant migration concern. Preferential pathways for contaminant transport are also addressed.

Human Processes

The FEPs identified as human processes encompass human behaviors and activities, resource use, and unintentional intrusion into the repository. Human process FEPs identified for assessment are related to the human exposure model and include anthropogenic climate change, human behavior, human-induced processes related to engineered features at the site, human-induced transport, inadvertent human intrusion, institutional control, land use, post-closure subsurface activities, waste recovery, water resource management, and weapons training such as that occurring at nearby bombing ranges.

Exposure

Exposure is an integral part of the conceptual model, and may result from reduced site performance. Exposure-relevant FEPs identified for evaluation include those related to dosimetry, exposure media, human exposure, ingestion pathways, and inhalation pathways. Dosimetry as a science is not a FEP *per se* but physiological dose response is accounted for in the PA model.

Transport pathways (e.g. food chains) that lead to foodstuff contamination, and human exposures due to inhalation of gaseous radionuclides and particulates are included. Exposure media include are foodstuffs, drinking water, and environmental media. Exposure pathways (ingestion, inhalation, etc.) and physiological effects from radionuclides and toxic contaminants (e.g. uranium) are also assessed.

Model Settings

Model settings that were identified during the FEP compilation process include model parameterization, period of performance, regulatory requirements, and spatial domain. While these are not FEPs in and of themselves, they are important considerations in the performance assessment model and are included with the FEPs for completeness.

7.0 References

- Andersson, J., T. Carlsson, T., F. Kautsky, E. Soderman, and S. Wingefors, 1989. The Joint SKI/SKB Scenario Development Project. SKB-TR89-35, SvenskKarnbranslehantering Ab, Stockholm, Sweden.
- Burkholder, H.C., 1980. "Waste Isolation Performance Assessment—A Status Report", in *Scientific Basis for Nuclear Waste Management*, Ed. C.J.M. Northrup, Jr., Plenum Press, New York, NY, Vol. 2, p. 689-702.
- Code of Federal Regulations, Title 10, Part 61 (10 CFR 61), Licensing Requirements for Land Disposal of Radioactive Waste, Government Printing Office, 2007.
- Code of Federal Regulations, Title 40, Part 191 (40 CFR 191), Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Waste, Government Printing Office, 1993.
- Guzowski, R.V., 1990. Preliminary Identification of Scenarios That May Affect the Escape and Transport of Radionuclides From the Waste Isolation Pilot Plant, Southeastern New Mexico, SAND89-7149, Sandia National Laboratories, Albuquerque, NM.
- Guzowski, R.V., and G. Newman, 1993, Preliminary Identification of Potentially Disruptive Scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site, SAND93-7100, Sandia National Laboratories, Albuquerque, NM.
- Hertzler, C.L., and C.L. Atwood, 1989. Preliminary Development and Screening of Release Scenarios for Greater Confinement Disposal of Transuranic Waste at the Nevada Test Site, EGG-SARE-8767, EG&G Idaho, Inc., Idaho Falls, ID.
- Hunter, R.L., 1983. Preliminary Scenarios for the Release of Radioactive Waste From a Hypothetical Repository in Basalt of the Columbia Plateau, SAND83-1342 (NUREG/CR-3353), Sandia National Laboratories, Albuquerque, NM.
- Hunter, R.L., 1989. Events and Processes for Constructing Scenarios for the Release of Transuranic Waste From the Waste Isolation Pilot Plant, Southeastern New Mexico, SAND89-2546, Sandia National Laboratories, Albuquerque, NM.
- Koplik, C.M., M.F. Kaplan, and B. Ross, 1982. "The Safety of Repositories for Highly Radioactive Wastes," *Reviews of Modern Physics*, Vol. 54, no. 1, p. 269-310.
- Merrett, GJ., and P.A. Gillespie, 1983. *Nuclear Fuel Waste Disposal: Long-Term Stability Analysis*, AECL-6820, Atomic Energy of Canada Limited, Pinawa, Manitoba.
- NEA (Nuclear Energy Agency), 1992, Systematic Approach to Scenario Development. A report of the NEA Working Group on the Identification and Selection of Scenarios for Performance Assessment of Radioactive Waste Disposal, Nuclear Energy Agency, Paris, France.
- NEA, 2000. Features, Events, and Processes (FEPs) for Geologic Disposal of Radioactive Waste. An International Database. Nuclear Energy Agency, Organization for Economic Cooperation and Development.

- NRC (U.S. Nuclear Regulatory Commission), 1994. *Standard Review Plan for the Review of a License Application for a Low-Level Radioactive Waste Disposal Facility*, NUREG-1200, U.S. Nuclear Regulatory Commission, Washington, D.C.
- NRC, 2000. A Performance Assessment Methodology for Low-Level Radioactive Waste Disposal Facilities, NUREG-1573, U.S. Nuclear Regulatory Commission, Washington, D.C.
- Shipers, L.R., 1989, Background Information for the Development of a Low-Level Waste Performance Assessment Methodology, Identification of Potential Exposure Pathways, NUREG/CR-5453, Vol. 1, U.S. Nuclear Regulatory Commission, December 1989.

Appendix: FEP Listings

This appendix lists the features, events, and processes (FEPs) identified for evaluation in Conceptual Site Model and Performance Assessment Scenario development. Table 1 contains all initial FEP values, listed and numbered by reference document.

Table 2Table 2 lists those FEPs retained for analysis, and Table 3 includes all those FEPs that were dismissed from further consideration.

Table 1. List of Initial FEPs by Reference

l	Table 1 (continued)		← Fo	rmatted: Space After: 0 pt
l	FEP ID	Initial FEP	Reference ¹	Fo	rmatted: Space After: 0 pt
1	1	meteorite	Andersson et al., 1989	Fo	rmatted Table
1	2	change in sea level	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
İ	3	desert and unsaturation	Andersson et al., 1989	—	rmatted: Space After: 0 pt
ı	4	no ice age	Andersson et al., 1989	_	rmatted: Space After: 0 pt
ı	5	glaciation	Andersson et al., 1989	\succeq	rmatted: Space After: 0 pt rmatted: Space After: 0 pt
ı	6	permafrost	Andersson et al., 1989	=	rmatted: Space After: 0 pt
ı	7	creeping of copper	Andersson et al., 1989	=	
l I	8		·		rmatted: Space After: 0 pt
l I		common cause canister defects - Quality control	Andersson et al., 1989	=	rmatted: Space After: 0 pt
l	9	cracking along welds	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
l	10	degradation of hole- and shaft seals	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	11	electro-chemical cracking	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	12	internal pressure	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	13	radiation effects on canister	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	14	random canister defects - Quality control	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	15	reactions with cement pore water	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	16	role of chlorides in copper corrosion	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	17	thermal cracking	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	18	corrosive agents, sulphides, oxygen etc	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	19	pitting	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	20	stress corrosion cracking	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	21	accumulation in peat	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	22	colloid generation and transport	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	23	colloid generation - source	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	24	colloids, complexing agents	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
l	25	accumulation in sediments	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	26	loss of ductility	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt
	27	matrix diffusion	Andersson et al., 1989	Fo	rmatted: Space After: 0 pt

Table 1	(continued	١
i abie i	aconunuea	

	Table 1 (d	continued)		_	Formatted: Space After: 0 pt
l	FEP ID	Initial FEP	Reference ¹	•	Formatted: Space After: 0 pt
	28	saturation of sorption sites	Andersson et al., 1989	•	Formatted Table
	29	solubility and precipitation	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	30	sorption	Andersson et al., 1989	-	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
ĺ	31	extreme channel flow of oxidants and nuclides	Andersson et al., 1989	4	Formatted: Space After: 0 pt
I	32	radiation effects on bentonite	Andersson et al., 1989	-	Formatted: Space After: 0 pt
	33	solubility within fuel matrix	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	34	thermal buoyancy	Andersson et al., 1989	-	Formatted: Space After: 0 pt
	35	thermochemical changes	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	36	diffusion - surface diffusion	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	37	dilution	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	38	dispersion	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	39	dissolution chemistry	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	40	dissolution of fracture fillings/precipitations	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	41	methane intrusion	Andersson et al., 1989	•	Formatted: Space After: 0 pt
l	42	accumulation of gases under permafrost	Andersson et al., 1989	-	Formatted: Space After: 0 pt
	43	gas transport	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	44	gas transport in bentonite	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	45	flow through buffer/backfill	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	46	preferential pathways in the buffer/backfill	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	47	poorly designed repository	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	48	backfill effects on copper corrosion	Andersson et al., 1989	-	Formatted: Space After: 0 pt
	49	backfill material deficiencies	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	50	changed hydrostatic pressure on canister	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	51	degradation of the bentonite by chemical reactions	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	52	erosion of buffer/backfill	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	53	excavation/backfilling effects on nearby rock	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	54	external stress	Andersson et al., 1989	•	Formatted: Space After: 0 pt
I	55	hydraulic conductivity change - excavation/backfilling effect	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	56	hydrostatic pressure on canister	Andersson et al., 1989	4	Formatted: Space After: 0 pt
l	57	movement of canister in buffer/backfill	Andersson et al., 1989	•	Formatted: Space After: 0 pt

T	/ · · · · · · · · · · · · · · · · · · ·
i abie 1	(continued)

ļ	Table 1 (d	continued)			Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹		Formatted: Space After: 0 pt
	58	thermal effects on the buffer material	Andersson et al., 1989	•	Formatted Table
	59	voids in the lead filling	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	60	swelling of bentonite into tunnels and cracks	Andersson et al., 1989		Formatted: Space After: 0 pt
1	61	swelling of corrosion products	Andersson et al., 1989	4	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
	62	uneven swelling of bentonite	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	63	mechanical effects - excavation/backfilling effects	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	64	mechanical failure of buffer/backfill	Andersson et al., 1989	4 (Formatted: Space After: 0 pt
	65	mechanical failure of repository	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	66	sudden energy release	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	67	coagulation of bentonite	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	68	chemical toxicity of wastes	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	69	complexing agents	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	70	far field hydrochemistry - acids, oxidants. nitrate	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	71	change of ground-water chemistry in nearby rock	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	72	chemical effects of rock reinforcement	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	73	coupled effects (electrophoresis)	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	74	effects of bentonite on ground-water chemistry	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	75	isotopic dilution	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	76	near field buffer chemistry	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	77	oxidizing conditions	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	78	Pb-I reactions	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	79	pH-deviations	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	80	recrystallization	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	81	redox front	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	82	redox potential	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	83	diagenesis	Andersson et al., 1989	4(Formatted: Space After: 0 pt
	84	accidents during operation	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	85	human-induced climate change	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	86	non-sealed repository	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	87	unsealed boreholes and/or shafts	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	88	explosions	Andersson et al., 1989	4	Formatted: Space After: 0 pt

Table 1	(continue	~~/\
i abie i	(CONLINU	zuı

	Table 1 (continued)			Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	•	Formatted: Space After: 0 pt
l	89	geothermal energy production	Andersson et al., 1989	•	Formatted Table
l	90	enhanced rock fracturing	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	91	thermo-hydro-mechanical effects	Andersson et al., 1989	•	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
I	92	altered surface water chemistry by humans	Andersson et al., 1989	4	Formatted: Space After: 0 pt
İ	93	city on the site	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	94	underground dwellings	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	95	loss of records	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	96	archeological intrusion	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	97	postclosure monitoring	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	98	underground test of nuclear devices	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	99	unsuccessful attempt of site improvement	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	100	poorly constructed repository	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	101	future boreholes and undetected past boreholes	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	102	other future uses of crystalline rock	Andersson et al., 1989	4	Formatted: Space After: 0 pt
l	103	reuse of boreholes	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	104	chemical sabotage	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	105	nuclear war	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	106	waste retrieval, mining	Andersson et al., 1989	4	Formatted: Space After: 0 pt
l	107	human-induced actions on ground-water recharge	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	108	human-induced changes in surface hydrology	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	109	water producing well	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	110	weathering of flow paths	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	111	erosion on surface/sediments	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	112	geothermally induced flow	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	113	sedimentation of bentonite	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	114	changes of ground-water flow	Andersson et al., 1989	4	Formatted: Space After: 0 pt
l	115	enhanced ground-water flow	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	116	groundwater recharge/discharge	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	117	resaturation	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	118	saline or fresh ground-water intrusion	Andersson et al., 1989	•	Formatted: Space After: 0 pt
	119	river meandering	Andersson et al., 1989	•	Formatted: Space After: 0 pt

Table 1	(continu	.~~1
i abie i	(CONLINE	ıea)

ļ	Table 1 (d	continued)			Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	_	Formatted: Space After: 0 pt
l	120	microbes	Andersson et al., 1989	•	Formatted Table
1	121	repository induced Pb/Cu electrochemical reactions	Andersson et al., 1989	•	Formatted: Space After: 0 pt
l	122	Gas generation	Andersson et al., 1989	•	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
	123	gas generation: He production	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	124	radiolysis	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	125	radiolysis	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	126	recoil of alpha-decay	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	127	reconcentration	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	128	chemical reactions (copper corrosion)	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	129	I, Cs-migration to fuel surface	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	130	interactions with corrosion products and waste	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	131	internal corrosion due to waste	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	132	natural telluric electrochemical reactions	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	133	perturbed buffer material chemistry	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	134	radioactive decay; heat	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	135	release of radionuclides from failed canister	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	136	role of the eventual channeling within the canister	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	137	soret effect	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	138	earthquakes	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	139	faulting	Andersson et al., 1989	4	Formatted: Space After: 0 pt
l	140	intruding dikes	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	141	changes of the magnetic field	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	142	stress changes of conductivity	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	143	creeping of rock mass	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	144	intrusion into accumulation zone in the biosphere	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	145	uplift and subsidence	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	146	effect of plate movements	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	147	tectonic activity - large scale	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	148	undetected discontinuities	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	149	undetected fracture zones	Andersson et al., 1989	4	Formatted: Space After: 0 pt
	150	volcanism	Andersson et al., 1989	4	Formatted: Space After: 0 pt

Table 1 (continued)		4	Formatted: Space After: 0 pt
FEP ID	Initial FEP	Reference ¹	_	Formatted: Space After: 0 pt
151	criticality	Andersson et al., 1989		Formatted Table
152	H2/02 explosions	Andersson et al., 1989	•	Formatted: Space After: 0 pt
153	co-storage of other waste	Andersson et al., 1989	+	Formatted: Space After: 0 pt
154	damaged or deviating fuel	Andersson et al., 1989	-	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
155	decontamination materials left	Andersson et al., 1989	4	Formatted: Space After: 0 pt
156	near storage of other waste	Andersson et al., 1989	4	Formatted: Space After: 0 pt
157	stray materials left	Andersson et al., 1989	4	Formatted: Space After: 0 pt
158	Meteorites	Burkholder, 1980	4	Formatted: Space After: 0 pt
159	climate modification	Burkholder, 1980	4	Formatted: Space After: 0 pt
160	Glaciation	Burkholder, 1980	4	Formatted: Space After: 0 pt
161	corrosion	Burkholder, 1980	4	Formatted: Space After: 0 pt
162	Transport Agent Introduction	Burkholder, 1980	4	Formatted: Space After: 0 pt
163	fluid migration	Burkholder, 1980	4	Formatted: Space After: 0 pt
164	dissolutioning	Burkholder, 1980	4	Formatted: Space After: 0 pt
165	biochemical gas generation	Burkholder, 1980	4	Formatted: Space After: 0 pt
166	decay product gas generation	Burkholder, 1980	4	Formatted: Space After: 0 pt
167	differential elastic response	Burkholder, 1980	4	Formatted: Space After: 0 pt
168	dewatering	Burkholder, 1980	4	Formatted: Space After: 0 pt
169	canister movement	Burkholder, 1980	4	Formatted: Space After: 0 pt
170	fluid pressure changes	Burkholder, 1980	-	Formatted: Space After: 0 pt
171	material property changes	Burkholder, 1980	4	Formatted: Space After: 0 pt
172	non-elastic response	Burkholder, 1980	4	Formatted: Space After: 0 pt
173	shaft seal failure	Burkholder, 1980	4	Formatted: Space After: 0 pt
174	geochemical alterations	Burkholder, 1980	4	Formatted: Space After: 0 pt
175	diagenesis	Burkholder, 1980	4	Formatted: Space After: 0 pt
176	gas or brine pockets	Burkholder, 1980	4	Formatted: Space After: 0 pt
	· ·	,	4	

Burkholder, 1980

Burkholder, 1980

Burkholder, 1980

Burkholder, 1980

Burkholder, 1980

reservoirs

undiscovered boreholes

Intentional Intrusion

Undetected Past Intrusion

archeological exhumation

177

178

179

180

181

Formatted: Space After: 0 pt

T	/ · · · · · · · · · · · · · · · · · · ·
i abie 1	(continued)

١.	Table 1 (d	continued)			Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	_	Formatted: Space After: 0 pt
	182	irrigation	Burkholder, 1980	•	Formatted Table
	183	establishment of new population center	Burkholder, 1980	4	Formatted: Space After: 0 pt
	184	improper waste emplacement	Burkholder, 1980		Formatted: Space After: 0 pt Formatted: Space After: 0 pt
1	185	resource mining (mineral hydrocarbon, geothermal, salt)	Burkholder, 1980	4	Formatted: Space After: 0 pt
	186	mine shafts	Burkholder, 1980	4	Formatted: Space After: 0 pt
	187	sabotage	Burkholder, 1980	4(Formatted: Space After: 0 pt
	188	war	Burkholder, 1980	4	Formatted: Space After: 0 pt
	189	waste recovery	Burkholder, 1980	4	Formatted: Space After: 0 pt
	190	intentional artificial ground-water recharge or withdrawal	Burkholder, 1980		Formatted: Space After: 0 pt
	191	weapons testing	Burkholder, 1980	4(Formatted: Space After: 0 pt
	192	Denudation and Stream Erosion	Burkholder, 1980	4(Formatted: Space After: 0 pt
	193	sedimentation	Burkholder, 1980	4	Formatted: Space After: 0 pt
	194	flooding	Burkholder, 1980		Formatted: Space After: 0 pt
	195	radiolysis	Burkholder, 1980	4(Formatted: Space After: 0 pt
	196	waste package - geology interactions	Burkholder, 1980	• (Formatted: Space After: 0 pt
	197	breccia pipes	Burkholder, 1980	4(Formatted: Space After: 0 pt
	198	diapirism	Burkholder, 1980	4(Formatted: Space After: 0 pt
	199	far-field faulting	Burkholder, 1980	4(Formatted: Space After: 0 pt
	200	near-field faulting	Burkholder, 1980	4 (Formatted: Space After: 0 pt
	201	faults, shear zones	Burkholder, 1980	4	Formatted: Space After: 0 pt
	202	static fracturing	Burkholder, 1980	4(Formatted: Space After: 0 pt
	203	impact fracturing	Burkholder, 1980	4(Formatted: Space After: 0 pt
	204	surficial fissuring	Burkholder, 1980	4(Formatted: Space After: 0 pt
	205	local fracturing	Burkholder, 1980	4	Formatted: Space After: 0 pt
	206	Igneous emplacement	Burkholder, 1980		Formatted: Space After: 0 pt
	207	intrusive magmatic activity	Burkholder, 1980	4(Formatted: Space After: 0 pt
	208	hydraulic fracturing	Burkholder, 1980	4	Formatted: Space After: 0 pt
	209	isostasy	Burkholder, 1980	4	Formatted: Space After: 0 pt
	210	lava tubes	Burkholder, 1980	4	Formatted: Space After: 0 pt
	211	Orogenic Diastrophism	Burkholder, 1980	4	Formatted: Space After: 0 pt
	212	Epeirogenic Displacement	Burkholder, 1980	•	Formatted: Space After: 0 pt

T	/ · · · · · · · · · · · · · · · · · · ·
i abie 1	(continued)

l	Table 1 (continued)		Forma	tted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	Forma	tted: Space After: 0 pt
	213	undetected features	Burkholder, 1980	Forma	tted Table
	214	extrusive magmatic activity	Burkholder, 1980	—	tted: Space After: 0 pt
I	215	criticality	Burkholder, 1980	—	tted: Space After: 0 pt
ĺ	216	chemical liquid waste disposal	Burkholder, 1980		tted: Space After: 0 pt tted: Space After: 0 pt
İ	217	storage of hydrocarbons or compressed air	Burkholder, 1980		tted: Space After: 0 pt
	218	non-nuclear waste disposal	Burkholder, 1980	Forma	tted: Space After: 0 pt
	219	Celestial bodies	Guzowski, 1990	Forma	tted: Space After: 0 pt
	220	meteorite impact	Guzowski, 1990	Forma	tted: Space After: 0 pt
	221	sea-level variations	Guzowski, 1990	Forma	tted: Space After: 0 pt
l	222	pluvial periods	Guzowski, 1990	Forma	tted: Space After: 0 pt
l	223	glaciation	Guzowski, 1990	Forma	tted: Space After: 0 pt
	224	seiches	Guzowski, 1990	Forma	tted: Space After: 0 pt
	225	formation of dissolution cavities	Guzowski, 1990	◆ Forma	tted: Space After: 0 pt
	226	excavation induced stress/fracturing in host rock	Guzowski, 1990	Forma	tted: Space After: 0 pt
l	227	subsidence and caving	Guzowski, 1990	Forma	tted: Space After: 0 pt
	228	thermally induced stress/fracturing in host rock	Guzowski, 1990	Forma	tted: Space After: 0 pt
	229	shaft and borehole seal degradation	Guzowski, 1990	Forma	tted: Space After: 0 pt
l	230	explosions	Guzowski, 1990	Forma	tted: Space After: 0 pt
l	231	Inadvertent Future Intrusions	Guzowski, 1990	Forma	tted: Space After: 0 pt
	232	injection wells	Guzowski, 1990	◆ Forma	tted: Space After: 0 pt
	233	irrigation	Guzowski, 1990	◆ Forma	tted: Space After: 0 pt
	234	drilling	Guzowski, 1990	◆ Forma	tted: Space After: 0 pt
	235	mining	Guzowski, 1990	Forma	tted: Space After: 0 pt
	236	damming of streams or rivers	Guzowski, 1990	Forma	tted: Space After: 0 pt
	237	withdrawal wells	Guzowski, 1990	Forma	tted: Space After: 0 pt
	238	mass wasting	Guzowski, 1990	Forma	tted: Space After: 0 pt
	239	erosion/ sedimentation	Guzowski, 1990	Forma	tted: Space After: 0 pt
l	240	flooding	Guzowski, 1990	Forma	tted: Space After: 0 pt
l	241	hydrologic stresses	Guzowski, 1990	Forma	tted: Space After: 0 pt
	242	hurricanes	Guzowski, 1990	Forma	tted: Space After: 0 pt
l	243	tsunamis	Guzowski, 1990	Forma	tted: Space After: 0 pt

Lable 1	(continued)

l	Table 1 (d	continued)		_	Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	•	Formatted: Space After: 0 pt
l	244	diapirism	Guzowski, 1990	•	Formatted Table
	245	faulting	Guzowski, 1990	•	Formatted: Space After: 0 pt
	246	formation of interconnected fracture systems	Guzowski, 1990	+	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
	247	regional subsidence or uplift (also applies to subsurface)	Guzowski, 1990	4	Formatted: Space After: 0 pt
	248	seismic activity	Guzowski, 1990	4	Formatted: Space After: 0 pt
	249	magmatic activity	Guzowski, 1990	4	Formatted: Space After: 0 pt
	250	volcanic activity	Guzowski, 1990	4	Formatted: Space After: 0 pt
	251	meteorite impact	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	252	climatic change	Hertzler and Atwood, 1989	•	Formatted: Space After: 0 pt
	253	sea level change	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	254	dam and reservoir formation from natural causes	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	255	glacial activity	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	256	radial dispersion	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	257	fluid interactions	Hertzler and Atwood, 1989	•	Formatted: Space After: 0 pt
	258	dissolution	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	259	decay product gas generation	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	260	infiltration and evapotranspiration	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	261	thermal changes in burial zone caused by heat generation	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	262	mechanical effects	Hertzler and Atwood, 1989	•	Formatted: Space After: 0 pt
	263	shaft/borehole seal failure	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	264	geochemical changes from natural causes	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	265	diagenesis	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	266	landslide	Hertzler and Atwood, 1989	•	Formatted: Space After: 0 pt
	267	local subsidence/caving	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	268	climate control	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	269	fire and explosion	Hertzler and Atwood, 1989	•	Formatted: Space After: 0 pt
	270	fire and explosion of waste after burial	Hertzler and Atwood, 1989	•	Formatted: Space After: 0 pt
	271	geochemical changes from manmade causes	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	272	earthquake from man-made causes	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	273	human surface activities	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt
	274	hydrology change from man-made causes	Hertzler and Atwood, 1989	4	Formatted: Space After: 0 pt

Table	4 1			۱۱.
Table	1 (CONT	ınue	(1)

	Table 1 (c	continued)			Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹		Formatted: Space After: 0 pt
	275	unanticipated intrusion	Hertzler and Atwood, 1989		Formatted Table
	276	undetected past intrusion	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	277	undetected features or processes	Hertzler and Atwood, 1989	-	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
	278	intentional intrusion	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	279	improper waste emplacement	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	280	mining inadvertent intruder	Hertzler and Atwood, 1989	 	Formatted: Space After: 0 pt
	281	dam and reservoir, man-made	Hertzler and Atwood, 1989	l	Formatted: Space After: 0 pt
	282	well-drilling inadvertent intruder	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	283	weapons testing	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	284	land erosion	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	285	sedimentation/ aggradation	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	286	lateral ground-water flow in the unsaturated zone	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	287	hydrology change from natural causes	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	288	hurricane	Hertzler and Atwood, 1989	ı	Formatted: Space After: 0 pt
	289	tornado	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	290	brush fire	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	291	chemical effects	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	292	diapirism	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	293	earthquake from natural causes	Hertzler and Atwood, 1989	-	Formatted: Space After: 0 pt
	294	faulting	Hertzler and Atwood, 1989	····	Formatted: Space After: 0 pt
	295	igneous activity	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	296	regional subsidence or uplift	Hertzler and Atwood, 1989	-	Formatted: Space After: 0 pt
	297	criticality	Hertzler and Atwood, 1989	·	Formatted: Space After: 0 pt
	298	chemical liquid waste disposal	Hertzler and Atwood, 1989	-	Formatted: Space After: 0 pt
	299	unanticipated waste composition	Hertzler and Atwood, 1989		Formatted: Space After: 0 pt
	300	permafrost affects repository	Hunter, 1983		Formatted: Space After: 0 pt
	301	fluids do not recirculate in response to thermal gradients	Hunter, 1983		Formatted: Space After: 0 pt
	302	fluids leave along new fault	Hunter, 1983		Formatted: Space After: 0 pt
	303	fluids recirculate in response to thermal gradients	Hunter, 1983		Formatted: Space After: 0 pt
	304	fluids recirculate in response to thermal gradients	Hunter, 1983		Formatted: Space After: 0 pt
	305	normal flow increases	Hunter, 1983		Formatted: Space After: 0 pt

T	/ · · · · · · · · · · · · · · · · · · ·
i abie 1	(continued)

	Table 1 (continued)		← F	Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	F	Formatted: Space After: 0 pt
	306	diffusive mixing occurs	Hunter, 1983		Formatted Table
ĺ	307	flux through repository is altered	Hunter, 1983	₽	Formatted: Space After: 0 pt
Ī	308	head is above outfall	Hunter, 1983	← ≻	Formatted: Space After: 0 pt
ĺ	309	head is below outfall	Hunter, 1983	_	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
İ	310	subsidence fractures end above repository	Hunter, 1983	=	Formatted: Space After: 0 pt
İ	311	subsidence fractures reach repository	Hunter, 1983		Formatted: Space After: 0 pt
İ	312	fluids carry waste to rivers or tributaries	Hunter, 1983		Formatted: Space After: 0 pt
ĺ	313	fluids carry waste to wells or springs	Hunter, 1983	← F	Formatted: Space After: 0 pt
I	314	ground-water flow paths are shortened	Hunter, 1983	← F	Formatted: Space After: 0 pt
	315	water from a confined aquifer enters repository	Hunter, 1983	← F	Formatted: Space After: 0 pt
l	316	water from the unconfined aquifer enters repository	Hunter, 1983	← F	Formatted: Space After: 0 pt
	317	location of river channel changes	Hunter, 1983	← F	Formatted: Space After: 0 pt
I	318	location of river channel changes and flow through repository is altered	Hunter, 1983	← [F	Formatted: Space After: 0 pt
l	319	flow channels close and reopen later	Hunter, 1983	← F	Formatted: Space After: 0 pt
	320	meteorite impact	Hunter, 1989	← F	Formatted: Space After: 0 pt
I	321	climatic change	Hunter, 1989	←	Formatted: Space After: 0 pt
l	322	glaciation	Hunter, 1989	←	Formatted: Space After: 0 pt
	323	leaching	Hunter, 1989	← F	Formatted: Space After: 0 pt
	324	diffusion out of the repository	Hunter, 1989	← F	Formatted: Space After: 0 pt
l	325	dissolution	Hunter, 1989	← F	Formatted: Space After: 0 pt
l	326	dissolution other than leaching	Hunter, 1989	← F	Formatted: Space After: 0 pt
l	327	thermal effects	Hunter, 1989	←	Formatted: Space After: 0 pt
l	328	seal performance	Hunter, 1989	←	Formatted: Space After: 0 pt
	329	subsidence	Hunter, 1989	← [F	Formatted: Space After: 0 pt
	330	exhumation	Hunter, 1989	← [F	Formatted: Space After: 0 pt
I	331	drilling into repository	Hunter, 1989	← [F	Formatted: Space After: 0 pt
I	332	effects of mining for resources	Hunter, 1989	← [F	Formatted: Space After: 0 pt
I	333	sabotage	Hunter, 1989	← [F	Formatted: Space After: 0 pt
l	334	warfare	Hunter, 1989	← [F	Formatted: Space After: 0 pt
	335	sedimentation	Hunter, 1989	←	Formatted: Space After: 0 pt

Table 1 (conti	inued)
----------------	--------

	Table 1 (continued)		Formatted: Space After: 0 pt
l	FEP ID	Initial FEP	Reference ¹	Formatted: Space After: 0 pt
	336	ground-water flow	Hunter, 1989	Formatted Table
I	337	migration of brine aquifer	Hunter, 1989	Formatted: Space After: 0 pt
1	338	migration of intracrystalline brine inclusions	Hunter, 1989	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
ĺ	339	effects of brine pocket	Hunter, 1989	Formatted: Space After: 0 pt
I	340	gas generation waste effect	Hunter, 1989	Formatted: Space After: 0 pt
l	341	radiolysis waste effect	Hunter, 1989	Formatted: Space After: 0 pt
l	342	waste/rock interaction	Hunter, 1989	Formatted: Space After: 0 pt
	343	breccia-pipe formation	Hunter, 1989	Formatted: Space After: 0 pt
	344	induced diapirism	Hunter, 1989	Formatted: Space After: 0 pt
	345	faulting	Hunter, 1989	Formatted: Space After: 0 pt
	346	Igneous intrusion	Hunter, 1989	Formatted: Space After: 0 pt
	347	nuclear criticality	Hunter, 1989	Formatted: Space After: 0 pt
l	348	meteorite impact	IAEA 1983	Formatted: Space After: 0 pt
l	349	climatic change	IAEA 1983	Formatted: Space After: 0 pt
l	350	sea level change	IAEA 1983	Formatted: Space After: 0 pt
	351	glacial erosion	IAEA 1983	Formatted: Space After: 0 pt
	352	geochemical change	IAEA 1983	Formatted: Space After: 0 pt
	353	corrosion	IAEA 1983	Formatted: Space After: 0 pt
l	354	transport agent introduction	IAEA 1983	Formatted: Space After: 0 pt
	355	fluid interactions	IAEA 1983	Formatted: Space After: 0 pt
	356	fluid migration	IAEA 1983	Formatted: Space After: 0 pt
	357	decay-product gas generation	IAEA 1983	Formatted: Space After: 0 pt
	358	faulty design	IAEA 1983	Formatted: Space After: 0 pt
	359	exploration bore-hole seal failure	IAEA 1983	Formatted: Space After: 0 pt
	360	thermal effects	IAEA 1983	Formatted: Space After: 0 pt
	361	canister movement	IAEA 1983	Formatted: Space After: 0 pt
	362	fluid pressure, density, viscosity changes	IAEA 1983	Formatted: Space After: 0 pt
l	363	differential elastic response	IAEA 1983	Formatted: Space After: 0 pt
l	364	material property changes	IAEA 1983	Formatted: Space After: 0 pt
l	365	mechanical effects	IAEA 1983	Formatted: Space After: 0 pt
ı	366	non-elastic response	IAEA 1983	Formatted: Space After: 0 pt

Table 1 (conti	inued)
----------------	--------

	Table 1 (continued)		_	Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹		Formatted: Space After: 0 pt
	367	shaft seal failure	IAEA 1983	•	Formatted Table
	368	geochemical change	IAEA 1983	•	Formatted: Space After: 0 pt
Ì	369	diagenesis	IAEA 1983	•	Formatted: Space After: 0 pt
1	370	gas or brine pockets	IAEA 1983	4	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
1	371	climate control	IAEA 1983	4	Formatted: Space After: 0 pt
	372	reservoirs	IAEA 1983	4	Formatted: Space After: 0 pt
	373	inadvertent future intrusion	IAEA 1983	4	Formatted: Space After: 0 pt
	374	undetected past intrusion	IAEA 1983	4	Formatted: Space After: 0 pt
	375	undiscovered boreholes	IAEA 1983	•	Formatted: Space After: 0 pt
1	376	Intentional intrusion	IAEA 1983	4	Formatted: Space After: 0 pt
	377	archeological exhumation	IAEA 1983	•	Formatted: Space After: 0 pt
	378	irrigation	IAEA 1983	•	Formatted: Space After: 0 pt
	379	faulty operation	IAEA 1983	-	Formatted: Space After: 0 pt
	380	faulty waste emplacement	IAEA 1983	•	Formatted: Space After: 0 pt
	381	resource mining (mineral, water, hydrocarbon, geothermal, salt, etc)	IAEA 1983	4	Formatted: Space After: 0 pt
	382	exploratory drilling	IAEA 1983	•	Formatted: Space After: 0 pt
	383	mine shafts	IAEA 1983	4	Formatted: Space After: 0 pt
	384	sabotage	IAEA 1983	-	Formatted: Space After: 0 pt
	385	war	IAEA 1983	-	Formatted: Space After: 0 pt
	386	waste recovery	IAEA 1983	•	Formatted: Space After: 0 pt
	387	intentional artificial ground-water recharge or withdrawal	IAEA 1983	•	Formatted: Space After: 0 pt
	388	denudation	IAEA 1983	•	Formatted: Space After: 0 pt
	389	stream erosion	IAEA 1983	•	Formatted: Space After: 0 pt
	390	sedimentation	IAEA 1983	4	Formatted: Space After: 0 pt
	391	flooding	IAEA 1983	4	Formatted: Space After: 0 pt
	392	ground-water flow	IAEA 1983	•	Formatted: Space After: 0 pt
	393	brine pockets	IAEA 1983	4	Formatted: Space After: 0 pt
	394	large-scale alterations of hydrology	IAEA 1983	4	Formatted: Space After: 0 pt
	395	hydrology change	IAEA 1983	4	Formatted: Space After: 0 pt
	396	gas generation	IAEA 1983	•	Formatted: Space After: 0 pt

Table 1 (continued)

	FEP ID	Initial FEP	Reference ¹	-	Formatted: Space After: 0 pt
	397	radiolysis	IAEA 1983		Formatted Table
1	398	waste package-rock interactions	IAEA 1983	•	Formatted: Space After: 0 pt
ĺ	399	breccia pipes	IAEA 1983	+	Formatted: Space After: 0 pt
, I	400	diapirism	IAEA 1983		Formatted: Space After: 0 pt
!		·			Formatted: Space After: 0 pt
l	401	faulting/seismicity	IAEA 1983	4	Formatted: Space After: 0 pt
	402	faults, shear zones	IAEA 1983	4	Formatted: Space After: 0 pt
	403	local fracturing	IAEA 1983	•	Formatted: Space After: 0 pt
	404	intrusive	IAEA 1983	•	Formatted: Space After: 0 pt
	405	intrusive dikes	IAEA 1983	4	Formatted: Space After: 0 pt
	406	Isostatic	IAEA 1983	•	Formatted: Space After: 0 pt
	407	lava tubes	IAEA 1983	•	Formatted: Space After: 0 pt
	408	orogenic	IAEA 1983	•	Formatted: Space After: 0 pt
	409	uplift/subsidence	IAEA 1983	•	Formatted: Space After: 0 pt
	410	epeirogenic	IAEA 1983	•	Formatted: Space After: 0 pt
	411	magmatic activity	IAEA 1983	•	Formatted: Space After: 0 pt
	412	extrusive	IAEA 1983	4	Formatted: Space After: 0 pt
	413	nuclear criticality	IAEA 1983	4	Formatted: Space After: 0 pt
	414	chemical liquid waste disposal	IAEA 1983	4	Formatted: Space After: 0 pt

Koplik et al., 1982

Koplik et al., 1982

Koplik et al., 1982

Koplik et al., 1982

Koplik et al., 1982

Koplik et al., 1982

Koplik et al., 1982

Koplik et al., 1982

Koplik et al., 1982

Koplik et al., 1982

Koplik et al., 1982

Koplik et al., 1982

Koplik et al., 1982

_	June 201/28 May 201/

415

416

417

418

419

420

421

422

423

424

425

426

427

meteorites

glaciation

corrosion

climate modification

climatic fluctuations

biosphere alteration

local fluid migration

decay product gas generation

Improper design of operation

change in local state of stress

dissolutioning

Thermal effects

canister movement

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Formatted: Space After: 0 pt

Table	4 4		·
Table	1 (CONT	inued)

١.	Table 1 (d	continued)		_	Formatted: Space After: 0 pt
l	FEP ID	Initial FEP	Reference ¹	•	Formatted: Space After: 0 pt
	428	readjustment of rock along joints	Koplik et al., 1982		Formatted Table
	429	fluid pressure changes	Koplik et al., 1982	+	Formatted: Space After: 0 pt
1	430	canister migration	Koplik et al., 1982	+	Formatted: Space After: 0 pt
1	431	convection	Koplik et al., 1982	4	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
l	432	differential elastic response	Koplik et al., 1982	4	Formatted: Space After: 0 pt
	433	material property changes	Koplik et al., 1982	•	Formatted: Space After: 0 pt
l	434	Mechanical effects	Koplik et al., 1982	4	Formatted: Space After: 0 pt
	435	nonelastic response	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	436	stored energy	Koplik et al., 1982	•	Formatted: Space After: 0 pt
1	437	shaft seal failure	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	438	seal - rock interactions	Koplik et al., 1982	4	Formatted: Space After: 0 pt
	439	subsidence of canister	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	440	geochemical alterations	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	441	diagenesis	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	442	gas or brine pockets	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	443	reservoirs	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	444	Inadvertent future intrusion	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	445	Undetected past intrusion	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	446	undiscovered boreholes	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	447	Intentional intrusion	Koplik et al., 1982	•	Formatted: Space After: 0 pt
1	448	archeological exhumation	Koplik et al., 1982	4	Formatted: Space After: 0 pt
1	449	irrigation	Koplik et al., 1982	•	Formatted: Space After: 0 pt
1	450	establishment of population center	Koplik et al., 1982	4	Formatted: Space After: 0 pt
	451	improper waste emplacement	Koplik et al., 1982	4	Formatted: Space After: 0 pt
1	452	resource mining (salt, mineral, hydrocarbon, geothermal)	Koplik et al., 1982	4	Formatted: Space After: 0 pt
	453	mine shafts	Koplik et al., 1982	4	Formatted: Space After: 0 pt
l	454	sabotage	Koplik et al., 1982	•	Formatted: Space After: 0 pt
l	455	war	Koplik et al., 1982	4	Formatted: Space After: 0 pt
l	456	waste recovery	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	457	Perturbation of ground-water system	Koplik et al., 1982	•	Formatted: Space After: 0 pt
	458	intentional artificial ground-water recharge or withdrawal	Koplik et al., 1982	•	Formatted: Space After: 0 pt

Lable 1	(continued)

FEP ID Initial FEP Reference Formatted: Space After: 0 pt 459 weapons testing Koplik et al., 1982 Formatted: Space After: 0 pt 460 Denudation and stream erosion Koplik et al., 1982 Formatted: Space After: 0 pt 461 Sedimentation Koplik et al., 1982 Formatted: Space After: 0 pt 462 Flooding Koplik et al., 1982 Formatted: Space After: 0 pt 463 Modification of hydrologic regime Koplik et al., 1982 Formatted: Space After: 0 pt 464 gas generation Koplik et al., 1982 Formatted: Space After: 0 pt 465 Radiation effects Koplik et al., 1982 Formatted: Space After: 0 pt 466 radiolysis Koplik et al., 1982 Formatted: Space After: 0 pt 467 Chemical effects Koplik et al., 1982 Formatted: Space After: 0 pt 468 waste package - geology interactions Koplik et al., 1982 Formatted: Space After: 0 pt 469 breccia pipes Koplik et al., 1982 Formatted: Space After: 0 pt 470 diaprirsm Koplik et al., 1982 Formatted: Space After: 0 pt 471 far-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 472 near-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 473 faults, shear zones Koplik et al., 1982 Formatted: Space After: 0 pt 474 Static fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 475 impact fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 476 surficial fissuring Koplik et al., 1982 Formatted: Space After: 0 pt 477 local fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 478 lgneous emplacement Koplik et al., 1982 Formatted: Space After: 0 pt 478 lgneous emplacement Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity	Table 1 ((continued)		4	Formatted: Space After: 0 pt
460 Denudation and stream erosion Koplik et al., 1982 Formatted: Space After: 0 pt	FEP ID	Initial FEP	Reference ¹	-	Formatted: Space After: 0 pt
460 Denudation and stream erosion Koplik et al., 1982 Formatted: Space After: 0 pt	459	weapons testing	Koplik et al., 1982	_	Formatted Table
461 Sedimentation	460	Denudation and stream erosion	Koplik et al., 1982	•	
462 Flooding Koplik et al., 1982 Formatted: Space After: 0 pt 463 Modification of hydrologic regime Koplik et al., 1982 Formatted: Space After: 0 pt 464 gas generation Koplik et al., 1982 Formatted: Space After: 0 pt 465 Radiation effects Koplik et al., 1982 Formatted: Space After: 0 pt 466 radiolysis Koplik et al., 1982 Formatted: Space After: 0 pt 467 Chemical effects Koplik et al., 1982 Formatted: Space After: 0 pt 468 waste package - geology interactions Koplik et al., 1982 Formatted: Space After: 0 pt 469 breccia pipes Koplik et al., 1982 Formatted: Space After: 0 pt 470 diapirism Koplik et al., 1982 Formatted: Space After: 0 pt 471 far-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 472 near-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 473 faults, shear zones Koplik et al., 1982 Formatted: Space After: 0 pt 474 Static fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 475 impact fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 476 surficial fissuring Koplik et al., 1982 Formatted: Space After: 0 pt 477 local fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 478 Igneous emplacement Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 481 isostasy Koplik et al., 1982 Formatted: Space After: 0 pt 482 lava tubes Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space	461	Sedimentation	Koplik et al., 1982	1	
463 Modification of hydrologic regime Koplik et al., 1982 Formatted: Space After: 0 pt 464 gas generation Koplik et al., 1982 Formatted: Space After: 0 pt 465 Radiation effects Koplik et al., 1982 Formatted: Space After: 0 pt 466 radiolysis Koplik et al., 1982 Formatted: Space After: 0 pt 467 Chemical effects Koplik et al., 1982 Formatted: Space After: 0 pt 468 waste package - geology interactions Koplik et al., 1982 Formatted: Space After: 0 pt 469 breccia pipes Koplik et al., 1982 Formatted: Space After: 0 pt 470 diaprism Koplik et al., 1982 Formatted: Space After: 0 pt 471 far-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 472 near-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 473 faults, shear zones Koplik et al., 1982 Formatted: Space After: 0 pt 474 Static fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 475 impact fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 476 surficial fissuring Koplik et al., 1982 Formatted: Space After: 0 pt 477 local fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 478 Igneous emplacement Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 481 isostasy Koplik et al., 1982 Formatted: Space After: 0 pt 482 lava tubes Koplik et al., 1982 Formatted: Space After: 0 pt 483 Orogenic diastrophism Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt	462	Flooding	Koplik et al., 1982	4	
465 Radiation effects	463	Modification of hydrologic regime	Koplik et al., 1982	4	
466 radiolysis Koplik et al., 1982 Formatted: Space After: 0 pt 467 Chemical effects Koplik et al., 1982 Formatted: Space After: 0 pt 468 waste package - geology interactions Koplik et al., 1982 Formatted: Space After: 0 pt 469 breccia pipes Koplik et al., 1982 Formatted: Space After: 0 pt 470 diapirism Koplik et al., 1982 Formatted: Space After: 0 pt 471 far-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 472 near-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 473 faults, shear zones Koplik et al., 1982 Formatted: Space After: 0 pt 474 Static fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 475 impact fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 476 surficial fissuring Koplik et al., 1982 Formatted: Space After: 0 pt 477 local fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 478 lgneous emplacement Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 481 isostasy Koplik et al., 1982 Formatted: Space After: 0 pt 482 lava tubes Koplik et al., 1982 Formatted: Space After: 0 pt 483 Orogenic diastrophism Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 485 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 486 Epeiroge	464	gas generation	Koplik et al., 1982	4	Formatted: Space After: 0 pt
467 Chemical effects	465	Radiation effects	Koplik et al., 1982	4	Formatted: Space After: 0 pt
468 waste package - geology interactions Koplik et al., 1982 Formatted: Space After: 0 pt 469 breccia pipes Koplik et al., 1982 Formatted: Space After: 0 pt 470 diaprirsm Koplik et al., 1982 Formatted: Space After: 0 pt 471 far-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 472 near-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 473 faults, shear zones Koplik et al., 1982 Formatted: Space After: 0 pt 474 Static fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 475 impact fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 476 surficial fissuring Koplik et al., 1982 Formatted: Space After: 0 pt 477 local fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 478 Igneous emplacement Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 481 isostasy Koplik et al., 1982 Formatted: Space After: 0 pt 482 lava tubes Koplik et al., 1982 Formatted: Space After: 0 pt 483 Orogenic diastrophism Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 485 Formatted: Space After: 0 pt 486 Formatted: Space After: 0 pt 487 Formatted: Space After: 0 pt 488 Formatted: Space After: 0 pt 489 Formatted:	466	radiolysis	Koplik et al., 1982	4	Formatted: Space After: 0 pt
469 breccia pipes	467	Chemical effects	Koplik et al., 1982	4	Formatted: Space After: 0 pt
470 diapirism	468	waste package - geology interactions	Koplik et al., 1982	4	Formatted: Space After: 0 pt
471 far-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 472 near-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 473 faults, shear zones Koplik et al., 1982 Formatted: Space After: 0 pt 474 Static fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 475 impact fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 476 surficial fissuring Koplik et al., 1982 Formatted: Space After: 0 pt 477 local fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 478 Igneous emplacement Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 481 isostasy Koplik et al., 1982 Formatted: Space After: 0 pt 482 lava tubes Koplik et al., 1982 Formatted: Space After: 0 pt 483 Orogenic diastrophism Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 485 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 486 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt	469	breccia pipes	Koplik et al., 1982	4	Formatted: Space After: 0 pt
472 near-field faulting Koplik et al., 1982 Formatted: Space After: 0 pt 473 faults, shear zones Koplik et al., 1982 Formatted: Space After: 0 pt 474 Static fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 475 impact fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 476 surficial fissuring Koplik et al., 1982 Formatted: Space After: 0 pt 477 local fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 478 Igneous emplacement Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 481 isostasy Koplik et al., 1982 Formatted: Space After: 0 pt 482 lava tubes Koplik et al., 1982 Formatted: Space After: 0 pt 483 Orogenic diastrophism Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 485 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 486 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt	470	diapirism	Koplik et al., 1982	4	Formatted: Space After: 0 pt
faults, shear zones Koplik et al., 1982 Formatted: Space After: 0 pt Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt	471	far-field faulting	Koplik et al., 1982	4	Formatted: Space After: 0 pt
Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt	472	near-field faulting	Koplik et al., 1982	4	Formatted: Space After: 0 pt
impact fracturing Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Formatted: Space After: 0 pt	473	faults, shear zones	Koplik et al., 1982	-	Formatted: Space After: 0 pt
476 surficial fissuring Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Formatted: Space After: 0 pt	474	Static fracturing	Koplik et al., 1982	4	Formatted: Space After: 0 pt
477 local fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 478 Igneous emplacement Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 481 isostasy Koplik et al., 1982 Formatted: Space After: 0 pt 482 lava tubes Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt	475	impact fracturing	Koplik et al., 1982	4	Formatted: Space After: 0 pt
478 Igneous emplacement Koplik et al., 1982 Formatted: Space After: 0 pt 479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 481 isostasy Koplik et al., 1982 Formatted: Space After: 0 pt 482 lava tubes Koplik et al., 1982 Formatted: Space After: 0 pt 483 Orogenic diastrophism Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 485 Formatted: Space After: 0 pt 486 Formatted: Space After: 0 pt 487 Formatted: Space After: 0 pt 488 Formatted: Space After: 0 pt 489 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 481 Formatted: Space After: 0 pt 482 Formatted: Space After: 0 pt 483 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 485 Formatted: Space After: 0 pt 486 Formatted: Space After: 0 pt 487 Formatted: Space After: 0 pt 488 Formatted: Space After: 0 pt 489 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 481 Formatted: Space After: 0 pt 482 Formatted: Space After: 0 pt 483 Formatted: Space After: 0 pt 484 Formatted: Space After: 0 pt 485 Formatted: Space After: 0 pt 486 Formatted: Space After: 0 pt 487 Formatted: Space After: 0 pt 488 Formatted: Space After: 0 pt 489 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 481 Formatted: Space After: 0 pt 482 Formatted: Space After: 0 pt 483 Formatted: Space After: 0 pt 484 Formatted: Space After: 0 pt 485 Formatted: Space After: 0 pt 486 Formatted: Space After: 0 pt 487	476	surficial fissuring	Koplik et al., 1982	4	Formatted: Space After: 0 pt
479 intrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 481 isostasy Koplik et al., 1982 Formatted: Space After: 0 pt 482 lava tubes Koplik et al., 1982 Formatted: Space After: 0 pt 483 Orogenic diastrophism Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 485 Formatted: Space After: 0 pt 486 Formatted: Space After: 0 pt 487 Formatted: Space After: 0 pt 488 Formatted: Space After: 0 pt 489 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 480 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 481 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 482 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 483 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 484 hydraulic fracturing Koplik et al., 1982 Formatted: Space After: 0 pt 485 hydraulic fracturing Formatted: Space After: 0 pt 486 hydraulic fracturing Formatted: Space After: 0 pt 487 hydraulic fracturing Formatted: Space After: 0 pt 488 hydraulic fracturing Formatted: Space After: 0 pt 489 hydraulic fracturing Formatted: Space After: 0 pt 480 hydraulic fracturing Formatted: Space After: 0 pt 480 hydraulic fracturing Formatted: Space After: 0 pt 480 hydraulic fracturing Formatted: Space After: 0 pt 480 hydraulic fracturing Formatted: Space After: 0 pt 480 hydraulic fracturing Formatted: Space After: 0 pt 481 hydraulic fracturing Formatted: Space After: 0 pt 482 hydraulic fracturing Formatted: Space After: 0 pt 484 hydraulic fracturing Formatted: Space After: 0 pt 485 hydraulic fracturin	477	local fracturing	Koplik et al., 1982	4	Formatted: Space After: 0 pt
480 hydraulic fracturing Koplik et al., 1982 Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt Koplik et al., 1982 Formatted: Space After: 0 pt	478	Igneous emplacement	Koplik et al., 1982	4	Formatted: Space After: 0 pt
481 isostasy Koplik et al., 1982 Formatted: Space After: 0 pt 482 lava tubes Koplik et al., 1982 Formatted: Space After: 0 pt 483 Orogenic diastrophism Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt 485 Formatted: Space After: 0 pt 486 Formatted: Space After: 0 pt 487 Formatted: Space After: 0 pt 488 Formatted: Space After: 0 pt 489 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 481 Formatted: Space After: 0 pt 482 Formatted: Space After: 0 pt 483 Formatted: Space After: 0 pt 484 Formatted: Space After: 0 pt 485 Formatted: Space After: 0 pt 486 Formatted: Space After: 0 pt 487 Formatted: Space After: 0 pt 488 Formatted: Space After: 0 pt 489 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 481 Formatted: Space After: 0 pt 482 Formatted: Space After: 0 pt 483 Formatted: Space After: 0 pt 484 Formatted: Space After: 0 pt 485 Formatted: Space After: 0 pt 486 Formatted: Space After: 0 pt 487 Formatted: Space After: 0 pt 488 Formatted: Space After: 0 pt 489 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Formatted: Space After: 0 pt 480 Forma	479	intrusive magmatic activity	Koplik et al., 1982	4	Formatted: Space After: 0 pt
482 lava tubes Koplik et al., 1982 Formatted: Space After: 0 pt 483 Orogenic diastrophism Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt	480	hydraulic fracturing	Koplik et al., 1982	4	Formatted: Space After: 0 pt
483 Orogenic diastrophism Koplik et al., 1982 Formatted: Space After: 0 pt 484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt	481	isostasy	Koplik et al., 1982	•	Formatted: Space After: 0 pt
484 Epeirogenic displacement Koplik et al., 1982 Formatted: Space After: 0 pt	482	lava tubes	Koplik et al., 1982	4	Formatted: Space After: 0 pt
	483	Orogenic diastrophism	Koplik et al., 1982	•	Formatted: Space After: 0 pt
485 Magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt	484	Epeirogenic displacement	Koplik et al., 1982	4	Formatted: Space After: 0 pt
	485	Magmatic activity	Koplik et al., 1982	4	Formatted: Space After: 0 pt
486 extrusive magmatic activity Koplik et al., 1982 Formatted: Space After: 0 pt	486	extrusive magmatic activity	Koplik et al., 1982	•	Formatted: Space After: 0 pt
487 criticality Koplik et al., 1982 Formatted: Space After: 0 pt	487	criticality	Koplik et al., 1982	4	Formatted: Space After: 0 pt
488 storage of hydrocarbons, compressed air, or hot water Koplik et al., 1982 Formatted: Space After: 0 pt	488	storage of hydrocarbons, compressed air, or hot water	Koplik et al., 1982	4	Formatted: Space After: 0 pt
489 non-nuclear waste disposal Koplik et al., 1982 Formatted: Space After: 0 pt	489	non-nuclear waste disposal	Koplik et al., 1982	4	Formatted: Space After: 0 pt

FEP ID	Initial FEP	Reference ¹	_	Formatted: Space After: 0 -t
			_	Formatted: Space After: 0 pt Formatted Table
490	chemical liquid waste disposal	Koplik et al., 1982		Formatted: Space After: 0 pt
491	Meteorite impact	Merrett and Gillespie, 1983		Formatted: Space After: 0 pt
492	determination of meteorite impact frequencies	Merrett and Gillespie, 1983	•	Formatted: Space After: 0 pt
493	probability of meteorite damage	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
494	Glaciation	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
495	glacial erosion	Merrett and Gillespie, 1983	•	Formatted: Space After: 0 pt
496	fracture mechanics analysis	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
497	vault-related events	Merrett and Gillespie, 1983	-	Formatted: Space After: 0 pt
498	presence of a heat source	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
499	excavation	Merrett and Gillespie, 1983	-	Formatted: Space After: 0 pt
500	use of explosive devices	Merrett and Gillespie, 1983	-	Formatted: Space After: 0 pt
501	drilling and mining	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
502	Denudation and fluvial erosion	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
503	denudation	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
504	fluvial erosion	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
505	alteration of hydrological conditions	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
506	new fault formation	Merrett and Gillespie, 1983	•	Formatted: Space After: 0 pt
507	rapid fault growth	Merrett and Gillespie, 1983	•	Formatted: Space After: 0 pt
508	slow fault growth	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
509	stress analysis	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
510	glacially induced faulting	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
511	subsidence and rebound	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
512	Seismic activity	Merrett and Gillespie, 1983	-	Formatted: Space After: 0 pt
513	jointed rock motion	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
514	Volcanic activity	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
515	hot-spot volcanic activity	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
516	rift system volcanic activity	Merrett and Gillespie, 1983	4	Formatted: Space After: 0 pt
517	Presence of a radioactive source	Merrett and Gillespie, 1983	-	Formatted: Space After: 0 pt
518	Meteorite impact	NEA OECD, 2000	4	Formatted: Space After: 0 pt
519	Climate change, Global	NEA OECD, 2000	4	Formatted: Space After: 0 pt

NEA OECD, 2000

Climate change, regional and local

520

Formatted: Space After: 0 pt

Table I (collilliaeu)	Table 1	(continued)
-----------------------	---------	-------------

	Table 1 (continued)			Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹		Formatted: Space After: 0 pt
	521	Ecological response to climate changes	NEA OECD, 2000		Formatted Table
	522	Hydrological/hydrogeological response to climate changes	NEA OECD, 2000		Formatted: Space After: 0 pt Formatted: Space After: 0 pt
ı	523	Sea Level change	NEA OECD, 2000		Formatted: Space After: 0 pt
ĺ	524	Warm climate effects (tropical and desert)	NEA OECD, 2000		Formatted: Space After: 0 pt
1	525	Glacial and ice sheet effects, local	NEA OECD, 2000		Formatted: Space After: 0 pt
1	526	Periglacial effects	NEA OECD, 2000		Formatted: Space After: 0 pt
1	527	Container materials and characteristics	NEA OECD, 2000		Formatted: Space After: 0 pt
ĺ	528	Atmospheric transport of contaminants	NEA OECD, 2000		Formatted: Space After: 0 pt
1	529	Vegetation	NEA OECD, 2000	1	Formatted: Space After: 0 pt
ĺ	530	Animal populations	NEA OECD, 2000		Formatted: Space After: 0 pt
İ	531	Biological/biochemical processes and conditions (in geosphere)	NEA OECD, 2000	-	Formatted: Space After: 0 pt
	532	Biological/biochemical processes and conditions (in waste and EBS)	NEA OECD, 2000		Formatted: Space After: 0 pt
	533	Species evolution	NEA OECD, 2000		Formatted: Space After: 0 pt
1	534	Animal, plant and microbe mediated transport of contaminants	NEA OECD, 2000		Formatted: Space After: 0 pt
	535	Colloids. contaminant interactions and transport with	NEA OECD, 2000		Formatted: Space After: 0 pt
	536	Contaminant transport path characteristics (in geosphere)	NEA OECD, 2000		Formatted: Space After: 0 pt
	537	Chemical/complexing agents, effects on contaminant speciation/transport	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	538	Solid-mediated transport of contaminants	NEA OECD, 2000		Formatted: Space After: 0 pt
l	539	Sorption/desorption processes, contaminant	NEA OECD, 2000		Formatted: Space After: 0 pt
	540	Speciation and solubility, contaminant	NEA OECD, 2000		Formatted: Space After: 0 pt
	541	Dissolution, precipitation, and crystallization, contaminant	NEA OECD, 2000		Formatted: Space After: 0 pt
	542	Noble gases	NEA OECD, 2000		Formatted: Space After: 0 pt
	543	Volatiles and potential for volatility	NEA OECD, 2000		Formatted: Space After: 0 pt
	544	Gas-mediated transport of contaminants	NEA OECD, 2000		Formatted: Space After: 0 pt
	545	Geological resources	NEA OECD, 2000		Formatted: Space After: 0 pt
	546	Geological units, other	NEA OECD, 2000		Formatted: Space After: 0 pt
I	547	Host rock	NEA OECD, 2000		Formatted: Space After: 0 pt
	548	Repository assumptions	NEA OECD, 2000		Formatted: Space After: 0 pt

Lable 1	(continued)

	Table 1 (continued)			• (Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹		Formatted: Space After: 0 pt
	549	Thermal processes and conditions (in geosphere)	NEA OECD, 2000		Formatted Table
	550	Excavation disturbed zone, host rock	NEA OECD, 2000		Formatted: Space After: 0 pt
1	551	Buffer/backfill materials and characteristics	NEA OECD, 2000		Formatted: Space After: 0 pt
1	552	Other engineered features materials and characteristics	NEA OECD, 2000	•	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
ĺ	553	Thermal processes and conditions (in wastes and EBS)	NEA OECD, 2000	•	Formatted: Space After: 0 pt
ĺ	554	Emplacement of wastes and backfilling	NEA OECD, 2000	•	Formatted: Space After: 0 pt
1	555	Repository design	NEA OECD, 2000	•	Formatted: Space After: 0 pt
ĺ	556	Mechanical processes and conditions (in geosphere)	NEA OECD, 2000	•	Formatted: Space After: 0 pt
Ì	557	Mechanical processes and conditions (in wastes and EBS)	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	558	Seals. cavern/tunnel/shaft	NEA OECD, 2000	• (Formatted: Space After: 0 pt
	559	Closure and repository sealing	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	560	Dose response assumptions	NEA OECD, 2000	• (Formatted: Space After: 0 pt
	561	Dosimetry	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	562	Drinking water, foodstuffs and drugs, contaminant concentrations in	NEA OECD, 2000		Formatted: Space After: 0 pt
	563	Environmental media, contaminant concentrations in	NEA OECD, 2000	• (Formatted: Space After: 0 pt
	564	Impacts or concern	NEA OECD, 2000		Formatted: Space After: 0 pt
	565	Human characteristics (physiology, metabolism)	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	566	Chemical/organic toxin stability	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	567	Exposure modes	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	568	Non-food products, contaminant concentrations in	NEA OECD, 2000	(Formatted: Space After: 0 pt
	569	Nonradiological toxicity/effects	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	570	Radiological toxicity/effects	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	571	Radon and radon daughter exposure	NEA OECD, 2000	•	Formatted: Space After: 0 pt
I	572	Diet and fluid Intake	NEA OECD, 2000		Formatted: Space After: 0 pt
	573	Food and water processing and preparation	NEA OECD, 2000		Formatted: Space After: 0 pt
	574	Food chains, uptake of contaminants in	NEA OECD, 2000		Formatted: Space After: 0 pt
I	575	Chemical/geochemical processes and conditions (in geosphere)	NEA OECD, 2000	•	Formatted: Space After: 0 pt
1	576	Chemical/geochemical processes and conditions (In wastes and	NEA OECD, 2000	• (Formatted: Space After: 0 pt
	577	Organics and potential for organic forms	NEA OECD, 2000	(Formatted: Space After: 0 pt

T	/ · · · · · · · · · · · · · · · · · · ·
i abie 1	(continued)

١,	Table 1 (continued)		_	Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	•	Formatted: Space After: 0 pt
	578	Diagenesis	NEA OECD, 2000		Formatted Table
	579	Gas sources and effects (in geosphere)	NEA OECD, 2000	•	Formatted: Space After: 0 pt
ĺ	580	Human influences on climate	NEA OECD, 2000	1	Formatted: Space After: 0 pt
l	581	Social and Institutional developments	NEA OECD, 2000	4	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
	582	Excavation/construction	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	583	Explosions and crashes	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	584	Future human action assumptions	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	585	Future human behavior (target group) assumptions	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	586	Habits (non-diet related behavior)	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	587	Leisure and other uses of environment	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	588	Human response to climate changes	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	589	Surface environment, human activities	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	590	Technological developments	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	591	Adults, children, Infants and other variations	NEA OECD, 2000	+	Formatted: Space After: 0 pt
	592	Human-action-mediated transport of contaminants	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	593	Community characteristics	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	594	Dwellings	NEA OECD, 2000	+	Formatted: Space After: 0 pt
	595	Motivation and knowledge issues (inadvertent/deliberate human actions)	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	596	Administrative control , repository site	NEA OECD, 2000	+	Formatted: Space After: 0 pt
	597	Records and markers, repository	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	598	Unintrusive site investigation	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	599	Site Investigation	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	600	Rural and agricultural land and water use (incl. fisheries)	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	601	Urban and Industrial land and water use	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	602	Wild and natural land and water use	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	603	Monitoring of repository	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	604	Remedial actions	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	605	Schedule and planning	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	606	Quality control	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	607	Retrievability	NEA OECD, 2000	4	Formatted: Space After: 0 pt

Table 1	(continued)
i abie i	(Continued)

l	Table 1 (continued)		•	Formatted: Space After: 0 pt
l	FEP ID	Initial FEP	Reference ¹		Formatted: Space After: 0 pt
I	608	Drilling activities (human intrusion)	NEA OECD, 2000	_	Formatted Table
I	609	Mining and other underground activities (human intrusion)	NEA OECD, 2000	1	Formatted: Space After: 0 pt
ı	610	Accidents and unplanned events	NEA OECD, 2000	+	Formatted: Space After: 0 pt
ı	611	Water management (wells, reservoirs. dams)	NEA OECD, 2000	4	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
ı	612	Coastal features	NEA OECD, 2000	4	Formatted: Space After: 0 pt
I	613	Topography and morphology	NEA OECD, 2000		Formatted: Space After: 0 pt
I	614	Erosion and deposition	NEA OECD, 2000	-	Formatted: Space After: 0 pt
I	615	Erosion and sedimentation	NEA OECD, 2000	4	Formatted: Space After: 0 pt
I	616	Hydraulic/hydrogeological processes and conditions (in geosphere)	NEA OECD, 2000	•	Formatted: Space After: 0 pt
	617	Hydraulic/hydrogeological processes and conditions (in wastes and EBS)	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	618	Hydrological/hydrogeological response to geological changes	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	619	Hydrothermal activity	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	620	Marine features	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	621	Soil and sediment	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	622	Aquifers and water-bearing features, near surface	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	623	Water-mediated transport of contaminants	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	624	Hydrological regime and water balance (near-surface)	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	625	Lakes, rivers, streams and springs	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	626	Atmosphere	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	627	Meteorology	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	628	Model and data Issues	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	629	Timescale of concern	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	630	Regulatory requirements and exclusions	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	631	Spatial domain or concern	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	632	Ecological/biological microbial systems	NEA OECD, 2000	4	Formatted: Space After: 0 pt
I	633	Microbial/biological/plant-mediated processes,	NEA OECD, 2000	4	Formatted: Space After: 0 pt
l	634	Gas sources and effects (in wastes and EBS)	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	635	Radioactive decay and in-growth	NEA OECD, 2000	4	Formatted: Space After: 0 pt
	636	Radiation effects (In wastes and EBS)	NEA OECD, 2000	•	Formatted: Space After: 0 pt

Lable 1	(continued)

FEP ID		Table 1 (d	continued)		_	Formatted: Space After: 0 pt
638		FEP ID	Initial FEP	Reference ¹	•	Formatted: Space After: 0 pt
Gasp Discontinuties, large scale (in geosphere) NEA OECD, 2000 Formatted: Space After: 0 pt Formatted: Space After		637	Inorganic solids/solutes	NEA OECD, 2000	•	Formatted Table
G39 Discontinuties, large scale (in geosphere) NEA OECD, 2000 Formatted: Space After: 0 pt		638	Salt diapirism and dissolution	NEA OECD, 2000	1	
640 Metamorphism		639	Discontinuities, large scale (in geosphere)	NEA OECD, 2000	•	
641 Deformation, elastic, plastic or brittle NEA OECD, 2000 Formatted: Space After: 0 pt 642 Seismicity NEA OECD, 2000 Formatted: Space After: 0 pt 643 Undetected features (in geosphere) NEA OECD, 2000 Formatted: Space After: 0 pt 644 Tectonic movements and orogeny NEA OECD, 2000 Formatted: Space After: 0 pt 645 Volcanic and magmatic activity NEA OECD, 2000 Formatted: Space After: 0 pt 646 Nuclear criticality NEA OECD, 2000 Formatted: Space After: 0 pt 647 Inventory, radionuclide and other material NEA OECD, 2000 Formatted: Space After: 0 pt 648 Waste form materials and characteristics NEA OECD, 2000 Formatted: Space After: 0 pt 649 Waste allocation NEA OECD, 2000 Formatted: Space After: 0 pt 650 meteorite impact NEA, 1992 Formatted: Space After: 0 pt 651 no ice age NEA, 1992 Formatted: Space After: 0 pt 652 sea-level rise/fall NEA, 1992 Formatted: Space After: 0 pt 653 ecological response to climatic change NEA, 1992 Formatted: Space After: 0 pt 654 glaciation (erosion/deposition, glacial loading, hydrogeological change) 655 periglacial effects (permafrost, high seasonality) NEA, 1992 Formatted: Space After: 0 pt 656 river flow and lake level changes NEA, 1992 Formatted: Space After: 0 pt 657 fracturing NEA, 1992 Formatted: Space After: 0 pt 658 embrittlement and cracking NEA, 1992 Formatted: Space After: 0 pt 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Fo	ı	640	Metamorphism	NEA OECD, 2000	4	
643 Undetected features (In geosphere) NEA OECD, 2000 Formatted: Space After: 0 pt	ı	641	Deformation, elastic, plastic or brittle	NEA OECD, 2000	•	
644 Tectonic movements and orogeny NEA OECD, 2000 Formatted: Space After: 0 pt 645 Volcanic and magmatic activity NEA OECD, 2000 Formatted: Space After: 0 pt 646 Nuclear criticality NEA OECD, 2000 Formatted: Space After: 0 pt 647 Inventory, radionuclide and other material NEA OECD, 2000 Formatted: Space After: 0 pt 648 Waste form materials and characteristics NEA OECD, 2000 Formatted: Space After: 0 pt 649 Waste allocation NEA OECD, 2000 Formatted: Space After: 0 pt 650 meteorite impact NEA, 1992 Formatted: Space After: 0 pt 651 no ice age NEA, 1992 Formatted: Space After: 0 pt 652 sea-level rise/fall NEA, 1992 Formatted: Space After: 0 pt 653 ecological response to climatic change NEA, 1992 Formatted: Space After: 0 pt 654 glaciation (erosion/deposition, glacial loading, NEA, 1992 Formatted: Space After: 0 pt 655 periglacial effects (permafrost, high seasonality) NEA, 1992 Formatted: Space After: 0 pt 656 river flow and lake level changes NEA, 1992 Formatted: Space After: 0 pt 657 fracturing NEA, 1992 Formatted: Space After: 0 pt 658 embrittlement and cracking NEA, 1992 Formatted: Space After: 0 pt 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 667 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 667 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 667 plant and animal evolution NEA, 1992 Formatted: Space After: 0		642	Seismicity	NEA OECD, 2000	•	Formatted: Space After: 0 pt
645 Volcanic and magmatic activity NEA OECD, 2000 Formatted: Space After: 0 pt		643	Undetected features (In geosphere)	NEA OECD, 2000	4	Formatted: Space After: 0 pt
646 Nuclear criticality NEA OECD, 2000 Formatted: Space After: 0 pt 647 Inventory, radionuclide and other material NEA OECD, 2000 Formatted: Space After: 0 pt 648 Waste form materials and characteristics NEA OECD, 2000 Formatted: Space After: 0 pt 649 Waste allocation NEA OECD, 2000 Formatted: Space After: 0 pt 650 meteorite impact NEA, 1992 Formatted: Space After: 0 pt 651 no ice age NEA, 1992 Formatted: Space After: 0 pt 652 sea-level rise/fall NEA, 1992 Formatted: Space After: 0 pt 653 ecological response to climatic change NEA, 1992 Formatted: Space After: 0 pt 654 glaciation (erosion/deposition, glacial loading, NEA, 1992 Formatted: Space After: 0 pt 655 periglacial effects (permafrost, high seasonality) NEA, 1992 Formatted: Space After: 0 pt 656 river flow and lake level changes NEA, 1992 Formatted: Space After: 0 pt 657 fracturing NEA, 1992 Formatted: Space After: 0 pt 658 embrittlement and cracking NEA, 1992 Formatted: Space After: 0 pt 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 formatted: Space After: 0 pt Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 669 Formatted: Space After: 0 pt Formatted: Space After: 0 pt 660 Formatted: Space After: 0		644	Tectonic movements and orogeny	NEA OECD, 2000	4	Formatted: Space After: 0 pt
647		645	Volcanic and magmatic activity	NEA OECD, 2000	•	Formatted: Space After: 0 pt
648 Waste form materials and characteristics NEA OECD, 2000 Formatted: Space After: 0 pt 649 Waste allocation NEA OECD, 2000 Formatted: Space After: 0 pt 650 meteorite impact NEA, 1992 Formatted: Space After: 0 pt 651 no ice age NEA, 1992 Formatted: Space After: 0 pt 652 sea-level rise/fall NEA, 1992 Formatted: Space After: 0 pt 653 ecological response to climatic change NEA, 1992 Formatted: Space After: 0 pt 654 glaciation (erosion/deposition, glacial loading, hydrogeological change) NEA, 1992 Formatted: Space After: 0 pt 655 periglacial effects (permafrost, high seasonality) NEA, 1992 Formatted: Space After: 0 pt 656 river flow and lake level changes NEA, 1992 Formatted: Space After: 0 pt 657 fracturing NEA, 1992 Formatted: Space After: 0 pt 658 embrittlement and cracking NEA, 1992 Formatted: Space After: 0 pt 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 667 formatted: Space After: 0 pt Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 667 formatted: Space After: 0 pt Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 669 plant and animal evolution NEA, 1992 Formatted:		646	Nuclear criticality	NEA OECD, 2000	4	Formatted: Space After: 0 pt
649 Waste allocation NEA OECD, 2000 Formatted: Space After: 0 pt 650 meteorite impact NEA, 1992 Formatted: Space After: 0 pt 651 no ice age NEA, 1992 Formatted: Space After: 0 pt 652 sea-level rise/fall NEA, 1992 Formatted: Space After: 0 pt 653 ecological response to climatic change NEA, 1992 Formatted: Space After: 0 pt 654 glaciation (erosion/deposition, glacial loading, hydrogeological change) NEA, 1992 Formatted: Space After: 0 pt 655 periglacial effects (permafrost, high seasonality) NEA, 1992 Formatted: Space After: 0 pt 656 river flow and lake level changes NEA, 1992 Formatted: Space After: 0 pt 657 fracturing NEA, 1992 Formatted: Space After: 0 pt 658 embrittlement and cracking NEA, 1992 Formatted: Space After: 0 pt 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 formatted: Space After: 0 pt Formatted: Space After: 0 pt 667 formatted: Space After: 0 pt Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 669 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt 660 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0		647	Inventory, radionuclide and other material	NEA OECD, 2000	4	Formatted: Space After: 0 pt
meteorite impact NEA, 1992 Formatted: Space After: 0 pt		648	Waste form materials and characteristics	NEA OECD, 2000	4	Formatted: Space After: 0 pt
651 no ice age NEA, 1992 Formatted: Space After: 0 pt 652 sea-level rise/fall NEA, 1992 Formatted: Space After: 0 pt 653 ecological response to climatic change NEA, 1992 Formatted: Space After: 0 pt 654 glaciation (erosion/deposition, glacial loading, hydrogeological change) 655 periglacial effects (permafrost, high seasonality) NEA, 1992 Formatted: Space After: 0 pt 656 river flow and lake level changes NEA, 1992 Formatted: Space After: 0 pt 657 fracturing NEA, 1992 Formatted: Space After: 0 pt 658 embrittlement and cracking NEA, 1992 Formatted: Space After: 0 pt 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 667 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 669 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660		649	Waste allocation	NEA OECD, 2000	4	Formatted: Space After: 0 pt
652 sea-level rise/fall NEA, 1992 Formatted: Space After: 0 pt 653 ecological response to climatic change NEA, 1992 Formatted: Space After: 0 pt 654 glaciation (erosion/deposition, glacial loading, hydrogeological change) NEA, 1992 Formatted: Space After: 0 pt 655 periglacial effects (permafrost, high seasonality) NEA, 1992 Formatted: Space After: 0 pt 656 river flow and lake level changes NEA, 1992 Formatted: Space After: 0 pt 657 fracturing NEA, 1992 Formatted: Space After: 0 pt 658 embrittlement and cracking NEA, 1992 Formatted: Space After: 0 pt 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 formatted: Space After: 0 pt Formatted: Space After: 0 pt 667 formatted: Space After: 0 pt Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 669 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 661 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 662 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 663 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 664 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 667 plant and animal evolution NEA, 1992	l	650	meteorite impact	NEA, 1992	4	Formatted: Space After: 0 pt
ecological response to climatic change NEA, 1992 Formatted: Space After: 0 pt		651	no ice age	NEA, 1992	+	Formatted: Space After: 0 pt
glaciation (erosion/deposition, glacial loading, hydrogeological change) 654 glaciation (erosion/deposition, glacial loading, hydrogeological change) 655 periglacial effects (permafrost, high seasonality) NEA, 1992 Formatted: Space After: 0 pt 656 river flow and lake level changes NEA, 1992 Formatted: Space After: 0 pt 657 fracturing NEA, 1992 Formatted: Space After: 0 pt 658 embrittlement and cracking NEA, 1992 Formatted: Space After: 0 pt 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt		652	sea-level rise/fall	NEA, 1992	4	Formatted: Space After: 0 pt
hydrogeological change) 655 periglacial effects (permafrost, high seasonality) NEA, 1992 Formatted: Space After: 0 pt 656 river flow and lake level changes NEA, 1992 Formatted: Space After: 0 pt 657 fracturing NEA, 1992 Formatted: Space After: 0 pt 658 embrittlement and cracking NEA, 1992 Formatted: Space After: 0 pt 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 669 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 661 Formatted: Space After: 0 pt 662 Formatted: Space After: 0 pt 663 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 664 Formatted: Space After: 0 pt 665 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt 668 Formatted: Space After: 0 pt 669 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 661 Formatted: Space After: 0 pt 662 Formatted: Space After: 0 pt 663 Formatted: Space After: 0 pt 664 Formatted: Space After: 0 pt 665 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt 668 Formatted: Space After: 0 pt 669 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 661 Formatted: Space After: 0 pt 662 Formatted: Space After: 0 pt 663 Formatted: Space After: 0 pt 664 Formatted: Space After: 0 pt 665 Format		653	ecological response to climatic change	NEA, 1992	4	Formatted: Space After: 0 pt
656 river flow and lake level changes NEA, 1992 Formatted: Space After: 0 pt 657 fracturing NEA, 1992 Formatted: Space After: 0 pt 658 embrittlement and cracking NEA, 1992 Formatted: Space After: 0 pt 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 669 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 661 Formatted: Space After: 0 pt 662 Formatted: Space After: 0 pt 663 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 664 Formatted: Space After: 0 pt 665 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt 668 Formatted: Space After: 0 pt 669 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 661 Formatted: Space After: 0 pt 662 Formatted: Space After: 0 pt 663 Formatted: Space After: 0 pt 664 Formatted: Space After: 0 pt 665 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt 668 Formatted: Space After: 0 pt 669 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt	I	654		NEA, 1992	•	Formatted: Space After: 0 pt
formatted: Space After: 0 pt 658 embrittlement and cracking NEA, 1992 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt		655	periglacial effects (permafrost, high seasonality)	NEA, 1992	4	Formatted: Space After: 0 pt
658 embrittlement and cracking NEA, 1992 Formatted: Space After: 0 pt 659 metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) NEA, 1992 Formatted: Space After: 0 pt 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Pormatted: Space After: 0 pt 668 Pormatted: Space After: 0 pt 669 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 661 Pormatted: Space After: 0 pt 662 Pormatted: Space After: 0 pt 663 Pormatted: Space After: 0 pt 664 Pormatted: Space After: 0 pt 665 Pormatted: Space After: 0 pt 666 Pormatted: Space After: 0 pt 667 Pormatted: Space After: 0 pt 668 Pormatted: Space After: 0 pt 669 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 661 Pormatted: Space After: 0 pt 662 Pormatted: Space After: 0 pt 663 Pormatted: Space After: 0 pt 664 Pormatted: Space After: 0 pt 665 Pormatted: Space After: 0 pt 666 Pormatted: Space After: 0 pt 667 Pormatted: Space After: 0 pt 668 Pormatted: Space After: 0 pt 669 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660 Pormatted: Space After: 0 pt 660		656	river flow and lake level changes	NEA, 1992	•	Formatted: Space After: 0 pt
metallic corrosion (pitting/uniform, internal and external agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt 668 Formatted: Space After: 0 pt 669 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 661 Formatted: Space After: 0 pt 662 Formatted: Space After: 0 pt 663 Formatted: Space After: 0 pt 664 Space After: 0 pt 665 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt 668 Formatted: Space After: 0 pt 669 Formatted: Space After: 0 pt 660 Formatt		657	fracturing	NEA, 1992	4	Formatted: Space After: 0 pt
agents, gas generation e.g. H2) 660 animal uptake NEA, 1992 Formatted: Space After: 0 pt 661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 669 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 661 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 662 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 663 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 664 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 665 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 Plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 667 Plant and Animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 Plant and Animal evolution NEA, 1992 Formatted: Space After: 0 pt 669 Plant and Animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 Plant and Animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 Plant and Animal evolution Plant and Animal evolution Plant and Animal evolution Plant and Animal evolution Plant and Animal evolution Plant and Animal evolution Plant and Animal evolution Plant and Animal evolution Plant and Animal evolution Plant and Animal evolution Plant and Animal evolution Plant and Animal evolution Plant and Animal evolution Plant		658	embrittlement and cracking	NEA, 1992	4	Formatted: Space After: 0 pt
661 plant uptake NEA, 1992 Formatted: Space After: 0 pt 662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt 668 Formatted: Space After: 0 pt 669 Formatted: Space After: 0 pt 660 Formatted: Space After: 0 pt 661 Formatted: Space After: 0 pt 662 Formatted: Space After: 0 pt 663 Formatted: Space After: 0 pt 664 Formatted: Space After: 0 pt 665 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt 668 Formatted: Space After: 0 pt 669 Formatted: Space After: 0 pt 660 Formatted: Sp	I	659	" "	NEA, 1992	•	Formatted: Space After: 0 pt
662 uptake by animal, plant, root NEA, 1992 Formatted: Space After: 0 pt 663 uptake by deep rooting species NEA, 1992 Formatted: Space After: 0 pt 664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 Formatted: Space After: 0 pt 667 Formatted: Space After: 0 pt 668 Formatted: Space After: 0 pt 669 Formatted: Space After: 0 pt 660		660	animal uptake	NEA, 1992	4	Formatted: Space After: 0 pt
663 uptake by deep rooting species NEA, 1992 664 soil and sediment bioturbation NEA, 1992 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt		661	plant uptake	NEA, 1992	4	Formatted: Space After: 0 pt
664 soil and sediment bioturbation NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 667 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 669 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 661 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 662 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 663 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 664 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 666 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 667 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 668 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 669 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt 660 plant an		662	uptake by animal, plant, root	NEA, 1992	4	Formatted: Space After: 0 pt
665 plant and animal evolution NEA, 1992 Formatted: Space After: 0 pt		663	uptake by deep rooting species	NEA, 1992	4	Formatted: Space After: 0 pt
учения при при при при при при при при при при		664	soil and sediment bioturbation	NEA, 1992	4	Formatted: Space After: 0 pt
666 colloid formation, dissolution and transport NEA, 1992		665	plant and animal evolution	NEA, 1992	4	Formatted: Space After: 0 pt
	I	666	colloid formation, dissolution and transport	NEA, 1992	1	Formatted: Space After: 0 pt

Tahla 1	(contin	(haıı

ļ	Table 1 (continued)			Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	•	Formatted: Space After: 0 pt
	667	accumulation in soils and organic debris	NEA, 1992		Formatted Table
	668	advection and dispersion	NEA, 1992	•	Formatted: Space After: 0 pt
1	669	matrix diffusion	NEA, 1992	•	Formatted: Space After: 0 pt
ĺ	670	multiphase flow and gas driven flow	NEA, 1992		Formatted: Space After: 0 pt Formatted: Space After: 0 pt
Ì	671	solubility limit	NEA, 1992	4	Formatted: Space After: 0 pt
	672	sorption (linear/non-linear, reversible/irreversible)	NEA, 1992		Formatted: Space After: 0 pt
	673	non-radioactive solute plume in geosphere (effect on redox, ph and sorption)	NEA, 1992	•	Formatted: Space After: 0 pt
	674	diffusion	NEA, 1992	4	Formatted: Space After: 0 pt
	675	mass, isotopic and species dilution	NEA, 1992	4	Formatted: Space After: 0 pt
	676	dissolution, precipitation, and crystallization	NEA, 1992	4	Formatted: Space After: 0 pt
	677	natural gas intrusion	NEA, 1992	4	Formatted: Space After: 0 pt
	678	gas flow	NEA, 1992	4	Formatted: Space After: 0 pt
	679	gas mediated transport	NEA, 1992	4	Formatted: Space After: 0 pt
	680	inadequate backfill or compaction voidage	NEA, 1992	4	Formatted: Space After: 0 pt
	681	dewatering of host rock	NEA, 1992	4	Formatted: Space After: 0 pt
	682	common cause failures	NEA, 1992	4	Formatted: Space After: 0 pt
	683	investigation borehole seal failure and degradation	NEA, 1992	4	Formatted: Space After: 0 pt
	684	stress field changes, settling, subsidence or caving	NEA, 1992	4	Formatted: Space After: 0 pt
	685	thermal effects (concrete hydration)	NEA, 1992	4	Formatted: Space After: 0 pt
	686	Thermal (nuclear and chemical)	NEA, 1992	4	Formatted: Space After: 0 pt
	687	canister or container movement	NEA, 1992	4	Formatted: Space After: 0 pt
	688	changes in in-situ stress field	NEA, 1992	4	Formatted: Space After: 0 pt
	689	subsidence / collapse	NEA, 1992	4	Formatted: Space After: 0 pt
1	690	differential elastic response	NEA, 1992	•	Formatted: Space After: 0 pt
	691	material defects (e.g. early canister failure)	NEA, 1992	•	Formatted: Space After: 0 pt
	692	material property changes	NEA, 1992	<u> </u>	Formatted: Space After: 0 pt
1	693	Mechanical	NEA, 1992	-	Formatted: Space After: 0 pt
	694	non-elastic response	NEA, 1992	•	Formatted: Space After: 0 pt
	695	Design and construction	NEA, 1992	•	Formatted: Space After: 0 pt
l	696	design modification	NEA, 1992	-	Formatted: Space After: 0 pt

Table 1 (continued

	Table 1 (continued)			Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹		Formatted: Space After: 0 pt
	697	shaft or access tunnel seal failure and degradation	NEA, 1992	•	Formatted Table
	698	altered soil or surface water chemistry	NEA, 1992	•	Formatted: Space After: 0 pt
	699	chemical transformations	NEA, 1992		Formatted: Space After: 0 pt Formatted: Space After: 0 pt
ĺ	700	chemical gradients (electrochemical effects and osmosis)	NEA, 1992	4	Formatted: Space After: 0 pt
ĺ	701	complexing agents	NEA, 1992	4	Formatted: Space After: 0 pt
	702	diagenesis	NEA, 1992	4	Formatted: Space After: 0 pt
	703	land slide	NEA, 1992	4	Formatted: Space After: 0 pt
	704	accidents during operation	NEA, 1992	4	Formatted: Space After: 0 pt
	705	agricultural and fisheries practice changes	NEA, 1992	4 (Formatted: Space After: 0 pt
	706	anthropogenic climate changes (greenhouse effect)	NEA, 1992	4	Formatted: Space After: 0 pt
	707	abandonment of unsealed repository	NEA, 1992	4	Formatted: Space After: 0 pt
	708	poor closure	NEA, 1992	4	Formatted: Space After: 0 pt
	709	tunneling	NEA, 1992	4	Formatted: Space After: 0 pt
	710	underground construction	NEA, 1992	4(Formatted: Space After: 0 pt
	711	geothermal energy production	NEA, 1992	4	Formatted: Space After: 0 pt
	712	repository flooding during operation	NEA, 1992	4	Formatted: Space After: 0 pt
	713	co-disposal of reactive wastes (deliberate)	NEA, 1992	4(Formatted: Space After: 0 pt
	714	undetected past intrusions (boreholes, mining)	NEA, 1992	•	Formatted: Space After: 0 pt
	715	injection of liquid wastes	NEA, 1992	4	Formatted: Space After: 0 pt
	716	loss of records	NEA, 1992	4	Formatted: Space After: 0 pt
	717	archeological investigation	NEA, 1992	•	Formatted: Space After: 0 pt
	718	irrigation	NEA, 1992	4	Formatted: Space After: 0 pt
	719	demographic change, urban development	NEA, 1992	4	Formatted: Space After: 0 pt
	720	land use changes	NEA, 1992	4	Formatted: Space After: 0 pt
	721	post-closure monitoring	NEA, 1992	4	Formatted: Space After: 0 pt
	722	underground nuclear testing	NEA, 1992	•	Formatted: Space After: 0 pt
	723	effects of phased operation	NEA, 1992	4	Formatted: Space After: 0 pt
	724	Operation and closure	NEA, 1992	4	Formatted: Space After: 0 pt
	725	poor quality construction	NEA, 1992	4	Formatted: Space After: 0 pt
	726	radioactive waste disposal error	NEA, 1992	4 (Formatted: Space After: 0 pt
I	727	Post-closure surface activities	NEA, 1992	4	Formatted: Space After: 0 pt

Table I (collilliaeu)	Table 1	(continued)
-----------------------	---------	-------------

-	Table 1 (d	continued)		_	Formatted: Space After: 0 pt
1	FEP ID	Initial FEP	Reference ¹	•	Formatted: Space After: 0 pt
	728	exploitation drilling	NEA, 1992	•	Formatted Table
	729	exploratory drilling	NEA, 1992	•	Formatted: Space After: 0 pt
1	730	resource mining	NEA, 1992	+	Formatted: Space After: 0 pt
i	731	quarrying, near surface extraction	NEA, 1992	4	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
İ	732	sabotage	NEA, 1992	4	Formatted: Space After: 0 pt
i	733	malicious intrusion (sabotage, act of war)	NEA, 1992	4	Formatted: Space After: 0 pt
i	734	recovery of repository materials	NEA, 1992	4	Formatted: Space After: 0 pt
ı	735	recovery of repository materials	NEA, 1992		Formatted: Space After: 0 pt
l I	736	ground-water abstraction	NEA, 1992		
I I	737	dams and reservoirs, built/drained	NEA, 1992		Formatted: Space After: 0 pt
 	738				Formatted: Space After: 0 pt
l I		coastal erosion and estuarine development	NEA, 1992		Formatted: Space After: 0 pt
l	739	denudation (eolian and fluvial)	NEA, 1992		Formatted: Space After: 0 pt
l	740	chemical denudation and weathering	NEA, 1992		Formatted: Space After: 0 pt
-	741	freshwater sediment transport and deposition	NEA, 1992	4	Formatted: Space After: 0 pt
1	742	fracture mineralization and weathering	NEA, 1992	4	Formatted: Space After: 0 pt
l	743	rock heterogeneity (permeability, mineralogy), affecting water and	NEA, 1992	4	Formatted: Space After: 0 pt
l	744	river, stream, channel erosion (downcutting)	NEA, 1992	-	Formatted: Space After: 0 pt
	745	marine sediment transport and deposition	NEA, 1992	4	Formatted: Space After: 0 pt
İ	746	extremes of precipitation, snow melt and associated flooding	NEA, 1992	•	Formatted: Space After: 0 pt
	747	effects at saline-freshwater interface	NEA, 1992	4	Formatted: Space After: 0 pt
	748	ground-water conditions (saturated/unsaturated)	NEA, 1992	4	Formatted: Space After: 0 pt
	749	ground-water discharge (to surface water, springs, soils, wells, and marine)	NEA, 1992	4	Formatted: Space After: 0 pt
İ	750	ground-water flow (Darcy, non-Darcy, intergranular fracture,	NEA, 1992	•	Formatted: Space After: 0 pt
	751	recharge to ground water	NEA, 1992	4	Formatted: Space After: 0 pt
	752	saline or freshwater intrusion	NEA, 1992	4	Formatted: Space After: 0 pt
	753	natural thermal effects	NEA, 1992	4	Formatted: Space After: 0 pt
ļ	754	induced hydrological changes (fluid pressure, density convection, viscosity)	NEA, 1992	4	Formatted: Space After: 0 pt
1	755	site flooding	NEA, 1992	4	Formatted: Space After: 0 pt

Table 1 (continued)		Formatted: Space After: 0 pt
FEP ID	Initial FEP	Reference ¹	Formatted: Space After: 0 pt
756	rivers rechanneled	NEA, 1992	Formatted Table
757	river meander	NEA, 1992	Formatted: Space After: 0 pt
758	frost weathering	NEA, 1992	Formatted: Space After: 0 pt
759	solar insolation	NEA, 1992	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
760	coastal surge, storms, and hurricanes	NEA, 1992	Formatted: Space After: 0 pt
761	precipitation, temperature, soil, water balance	NEA, 1992	Formatted: Space After: 0 pt
762	ecological change (ex. forest fire cycles)	NEA, 1992	Formatted: Space After: 0 pt
763	microbial interactions	NEA, 1992	Formatted: Space After: 0 pt
764	microbiological (effects on corrosion/degradation, solubility/complexation, gas generation, ex. CH.C02)	NEA, 1992	Formatted: Space After: 0 pt
765	pedogenesis	NEA, 1992	Formatted: Space After: 0 pt
766	gas effects (pressurization, disruption, explosion, fire)	NEA, 1992	Formatted: Space After: 0 pt
767	radioactive decay and ingrowth (chain decay)	NEA, 1992	Formatted: Space After: 0 pt
768	radiolysis	NEA, 1992	Formatted: Space After: 0 pt
769	Radiological	NEA, 1992	Formatted: Space After: 0 pt
770	heterogeneity of waste forms (chemical, physical)	NEA, 1992	Formatted: Space After: 0 pt
771	cellulosic degradation	NEA, 1992	Formatted: Space After: 0 pt
772	interactions of host materials and ground water with repository material (ex. concrete carbonation, sulphate attack)	NEA, 1992	Formatted: Space After: 0 pt
773	interactions of waste and repository materials with host materials (electrochemical corrosive agents)	NEA, 1992	Formatted: Space After: 0 pt
774	introduced complexing agents and cellulosics	NEA, 1992	Formatted: Space After: 0 pt
775	induced chemical changes (solubility sorption, species equilibrium, mineralization)	NEA, 1992	Formatted: Space After: 0 pt
776	diapirism	NEA, 1992	Formatted: Space After: 0 pt
777	fault activation	NEA, 1992	Formatted: Space After: 0 pt
778	fault generation	NEA, 1992	Formatted: Space After: 0 pt
779	host rock fracture aperture changes	NEA, 1992	Formatted: Space After: 0 pt
780	metamorphic activity	NEA, 1992	Formatted: Space After: 0 pt
781	changes in the earth's magnetic field	NEA, 1992	Formatted: Space After: 0 pt
782	uplift and subsidence (orogenic, isostatic)	NEA, 1992	Formatted: Space After: 0 pt
783	seismicity	NEA, 1992	Formatted: Space After: 0 pt

Table 1	(continued)
---------	-------------

Table 1	(continued)		Formatted: Space After: 0 pt
FEP ID	Initial FEP	Reference ¹	Formatted: Space After: 0 pt
784	plate movement/tectonic change	NEA, 1992	Formatted Table
785	undetected features (faults, fracture networks, shear zones, brecciation, gas pockets)	NEA, 1992	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
786	magmatic activity (intrusive, extrusive)	NEA, 1992	Formatted: Space After: 0 pt
787	nuclear criticality	NEA, 1992	Formatted: Space After: 0 pt
788	inadvertent inclusion of undesirable materials	NEA, 1992	Formatted: Space After: 0 pt
789	Recurrance of Lake Bonneville	Neptune	Formatted: Space After: 0 pt
790	Wave action	Neptune	Formatted: Space After: 0 pt
791	Animal burrowing	Neptune	Formatted: Space After: 0 pt
792	Dust devils	Neptune	Formatted: Space After: 0 pt
793	Barrier stability during inundation	Neptune	Formatted: Space After: 0 pt
794	inhalation pathways	Neptune	Formatted: Space After: 0 pt
795	human induced hydraulic fracturing	Neptune	Formatted: Space After: 0 pt
796	natural hydraulic fracturing (hydrogeological)	Neptune	Formatted: Space After: 0 pt
797	Sedimentation	Neptune	Formatted: Space After: 0 pt
798	Inundation	Neptune	Formatted: Space After: 0 pt
799	radon emanation	Neptune	Formatted: Space After: 0 pt
800	natural hydraulic fracturing (tectonic/seismic/volcanic)	Neptune	Formatted: Space After: 0 pt
801	Off-Site Residents: impacts on the site by people who might use the area but don't live on the site itself.	Neptune	Formatted: Space After: 0 pt
802	On-Site Residents: water well with desalinization; construction-related activities like basements, footings, and utilities; enhanced infiltration from septic; altered plant/animal communities; effect of grading on infiltration; effect of buildings and pavement on evapotranspiration.	Neptune	Formatted: Space After: 0 pt
803	Agricultural activities	Neptune	Formatted: Space After: 0 pt
804	Explosions and Crashes related to plane crashes, bombs	Neptune	Formatted: Space After: 0 pt
805	Accidental Intrusion, facility properties intact: mineral, oil and gas, geothermal or other resource exploration; water well with desalinization; construction-related activities	Neptune	Formatted: Space After: 0 pt
806	Accidental Intrusion, facility properties altered due to prior volcanic or seismic event	Neptune	Formatted: Space After: 0 pt
807	FEPs related to post-closure inhabitation of the area	Neptune	Formatted: Space After: 0 pt
808	Deliberate Intrusion (purposeful waste retrieval; archeology; terrorism, etc)	Neptune	Formatted: Space After: 0 pt

Table 1 (cor	ntınued)
--------------	----------

FEPID Initial FEP Reference' Refe	Table 1 (continued)		_	Formatted: Space After: 0 pt
who come looking for something, or to some kind of major accident like a plane crash either before or after closure 810 meteorite	FEP ID	Initial FEP	Reference ¹	•	Formatted: Space After: 0 pt
accident like a plane crash either before or after closure 810 meteorite	809	·	Neptune	•	
811 climatic variability					Formatted: Space After: 0 pt
812 minor climatic changes	810	meteorite	Prij et al. 1991	-	Formatted: Space After: 0 pt
813 sea-level changes	811	climatic variability	Prij et al. 1991	4	Formatted: Space After: 0 pt
814 ecological response to climate	812	minor climatic changes	Prij et al. 1991	4	Formatted: Space After: 0 pt
815 glaciation	813	sea-level changes	Prij et al. 1991	4	Formatted: Space After: 0 pt
816 periglacial effects	814	ecological response to climate	Prij et al. 1991	4	Formatted: Space After: 0 pt
817 canister defects Prij et al. 1991 Formatted: Space After: 0 pt 818 common cause (canister) failures Prij et al. 1991 Formatted: Space After: 0 pt 819 fracturing Prij et al. 1991 Formatted: Space After: 0 pt 820 embrittlement, cracking Prij et al. 1991 Formatted: Space After: 0 pt 821 metallic corrosion Prij et al. 1991 Formatted: Space After: 0 pt 822 bioturbation of soil sediment Prij et al. 1991 Formatted: Space After: 0 pt 823 radiocolloid formation Prij et al. 1991 Formatted: Space After: 0 pt 824 accumulation in soils, organic debris Prij et al. 1991 Formatted: Space After: 0 pt 825 transport of radionuclides Prij et al. 1991 Formatted: Space After: 0 pt 826 advection and dispersion Prij et al. 1991 Formatted: Space After: 0 pt 827 matrix diffusion Prij et al. 1991 Formatted: Space After: 0 pt 828 multiphase flow Prij et al. 1991 Formatted: Space After: 0 pt 829 leaching of nuclides Prij et al. 1991 Formatted: Space After: 0 pt 830 non-radioactive solute in geosphere Prij et al. 1991 Formatted: Space After: 0 pt 831 diffusion Prij et al. 1991 Formatted: Space After: 0 pt 832 dilution of mass Prij et al. 1991 Formatted: Space After: 0 pt 833 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 834 natural gas intrusion Prij et al. 1991 Formatted: Space After: 0 pt 835 gas mediated transport Prij et al. 1991 Formatted: Space After: 0 pt 836 inadequate backfill compaction, voidage Prij et al. 1991 Formatted: Space After: 0 pt 837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt 838 rovergence of openings Prij et al. 1991 Formatted: Space After: 0 pt 839 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt 830 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt	815	glaciation	Prij et al. 1991	4	Formatted: Space After: 0 pt
818 common cause (canister) failures Prij et al. 1991 Formatted: Space After: 0 pt Formatted:	816	periglacial effects	Prij et al. 1991	4	Formatted: Space After: 0 pt
819 fracturing Prij et al. 1991	817	canister defects	Prij et al. 1991	•	Formatted: Space After: 0 pt
embrittlement, cracking Prij et al. 1991 Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Promatted: Space After: 0 pt Prij et al. 1991 Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt Promatted: Space After: 0 pt	818	common cause (canister) failures	Prij et al. 1991	•	Formatted: Space After: 0 pt
metallic corrosion Prij et al. 1991 Formatted: Space After: 0 pt	819	fracturing	Prij et al. 1991	4	Formatted: Space After: 0 pt
822 bioturbation of soil sediment	820	embrittlement, cracking	Prij et al. 1991	•	Formatted: Space After: 0 pt
823 radiocolloid formation Prij et al. 1991 Pormatted: Space After: 0 pt Prij et al. 1991 Romatted: Space After: 0 pt Prij et al. 1991 Romatted: Space After: 0 pt Prij et al. 1991 Romatted: Space After: 0 pt Prij et al. 1991 Romatted: Space After: 0 pt Prij et al. 1991 Romatted: Space After: 0 pt Prij et al. 1991 Prij et al. 1991 Romatted: Space After: 0 pt Prij et al. 1991 Prij et al. 1991 Romatted: Space After: 0 pt Romatted: Space After: 0 pt Romatted: Space After: 0 pt Romatted: Space After: 0 pt	821	metallic corrosion	Prij et al. 1991	4	Formatted: Space After: 0 pt
824 accumulation in soils, organic debris	822	bioturbation of soil sediment	Prij et al. 1991	•	Formatted: Space After: 0 pt
825 transport of radionuclides	823	radiocolloid formation	Prij et al. 1991	•	Formatted: Space After: 0 pt
826 advection and dispersion Prij et al. 1991 Formatted: Space After: 0 pt 827 matrix diffusion Prij et al. 1991 Formatted: Space After: 0 pt 828 multiphase flow Prij et al. 1991 Formatted: Space After: 0 pt 829 leaching of nuclides Prij et al. 1991 Formatted: Space After: 0 pt 830 non-radioactive solute in geosphere Prij et al. 1991 Formatted: Space After: 0 pt 831 diffusion Prij et al. 1991 Formatted: Space After: 0 pt 832 dilution of mass Prij et al. 1991 Formatted: Space After: 0 pt 833 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 834 natural gas intrusion Prij et al. 1991 Formatted: Space After: 0 pt 835 gas mediated transport Prij et al. 1991 Formatted: Space After: 0 pt 836 inadequate backfill compaction, voidage Prij et al. 1991 Formatted: Space After: 0 pt 837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt Formatted: Space After: 0 pt 832 Formatted: Space After: 0 pt Formatted: Space After: 0 pt 833 Formatted: Space After: 0 pt Formatted: Space After: 0 pt 834 Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt 835 Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After:	824	accumulation in soils, organic debris	Prij et al. 1991	•	Formatted: Space After: 0 pt
matrix diffusion Prij et al. 1991 Formatted: Space After: 0 pt B28 multiphase flow Prij et al. 1991 Formatted: Space After: 0 pt B29 leaching of nuclides Prij et al. 1991 Formatted: Space After: 0 pt B30 non-radioactive solute in geosphere Prij et al. 1991 Formatted: Space After: 0 pt B31 diffusion Prij et al. 1991 Formatted: Space After: 0 pt B32 dilution of mass Prij et al. 1991 Formatted: Space After: 0 pt B33 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt Formatted: Space After: 0 pt	825	transport of radionuclides	Prij et al. 1991	•	Formatted: Space After: 0 pt
multiphase flow Prij et al. 1991 Formatted: Space After: 0 pt 829 leaching of nuclides Prij et al. 1991 Formatted: Space After: 0 pt 830 non-radioactive solute in geosphere Prij et al. 1991 Formatted: Space After: 0 pt 831 diffusion Prij et al. 1991 Formatted: Space After: 0 pt 832 dilution of mass Prij et al. 1991 Formatted: Space After: 0 pt 833 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 834 natural gas intrusion Prij et al. 1991 Formatted: Space After: 0 pt 835 gas mediated transport Prij et al. 1991 Formatted: Space After: 0 pt 836 inadequate backfill compaction, voidage Prij et al. 1991 Formatted: Space After: 0 pt 837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt	826	advection and dispersion	Prij et al. 1991	•	Formatted: Space After: 0 pt
829 leaching of nuclides Prij et al. 1991 Formatted: Space After: 0 pt 830 non-radioactive solute in geosphere Prij et al. 1991 Formatted: Space After: 0 pt 831 diffusion Prij et al. 1991 Formatted: Space After: 0 pt 832 dilution of mass Prij et al. 1991 Formatted: Space After: 0 pt 833 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 834 natural gas intrusion Prij et al. 1991 Formatted: Space After: 0 pt 835 gas mediated transport Prij et al. 1991 Formatted: Space After: 0 pt 836 inadequate backfill compaction, voidage Prij et al. 1991 Formatted: Space After: 0 pt 837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt 832 Formatted: Space After: 0 pt 833 Formatted: Space After: 0 pt 834 Formatted: Space After: 0 pt 835 Formatted: Space After: 0 pt 836 Formatted: Space After: 0 pt 837 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt 832 Formatted: Space After: 0 pt 833 Formatted: Space After: 0 pt 834 Formatted: Space After: 0 pt 835 Formatted: Space After: 0 pt 836 Formatted: Space After: 0 pt 837 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt 832 Formatted: Space After: 0 pt 833 Formatted: Space After: 0 pt 834 Formatted: Space After: 0 pt 835 Formatted: Space After: 0 pt 836 Formatted: Space After: 0 pt 837 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space Afte	827	matrix diffusion	Prij et al. 1991	•	Formatted: Space After: 0 pt
830 non-radioactive solute in geosphere Prij et al. 1991 Formatted: Space After: 0 pt 831 diffusion Prij et al. 1991 Formatted: Space After: 0 pt 832 dilution of mass Prij et al. 1991 Formatted: Space After: 0 pt 833 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 834 natural gas intrusion Prij et al. 1991 Formatted: Space After: 0 pt 835 gas mediated transport Prij et al. 1991 Formatted: Space After: 0 pt 836 inadequate backfill compaction, voidage Prij et al. 1991 Formatted: Space After: 0 pt 837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt 832 Formatted: Space After: 0 pt 833 Formatted: Space After: 0 pt 834 Formatted: Space After: 0 pt 835 Formatted: Space After: 0 pt 836 Formatted: Space After: 0 pt 837 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt 832 Formatted: Space After: 0 pt 833 Formatted: Space After: 0 pt 834 Formatted: Space After: 0 pt 835 Formatted: Space After: 0 pt 836 Formatted: Space After: 0 pt 837 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt 832 Formatted: Space After: 0 pt 833 Formatted: Space After: 0 pt 834 Formatted: Space After: 0 pt 835 Formatted: Space After: 0 pt 836 Formatted: Space After: 0 pt 837 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt 832 Formatted: Space After:	828	multiphase flow	Prij et al. 1991	•	Formatted: Space After: 0 pt
831 diffusion Prij et al. 1991 Formatted: Space After: 0 pt 832 dilution of mass Prij et al. 1991 Formatted: Space After: 0 pt 833 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 834 natural gas intrusion Prij et al. 1991 Formatted: Space After: 0 pt 835 gas mediated transport Prij et al. 1991 Formatted: Space After: 0 pt 836 inadequate backfill compaction, voidage Prij et al. 1991 Formatted: Space After: 0 pt 837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt 838 formatted: Space After: 0 pt Formatted: Space After: 0 pt 839 formatted: Space After: 0 pt Formatted: Space After: 0 pt 830 formatted: Space After: 0 pt Formatted: Space After: 0 pt 831 formatted: Space After: 0 pt Formatted: Space After: 0 pt 831 formatted: Space After: 0 pt Formatted: Space After: 0 pt 832 formatted: Space After: 0 pt Formatted: Space After: 0 pt 833 formatted: Space After: 0 pt Formatted: Space After: 0 pt 834 formatted: Space After: 0 pt Formatted: Space After: 0 pt 835 formatted: Space After: 0 pt Formatted: Space After: 0 pt 836 formatted: Space After: 0 pt Formatted: Space After: 0 pt 837 formatted: Space After: 0 pt Formatted: Space After: 0 pt 836 formatted: Space After: 0 pt Formatted: Space After: 0 pt 837 formatted: Space After: 0 pt Formatted: Space After: 0 pt 838 formatted: Space After: 0 pt Formatted: Space After: 0 pt 839 formatted: Space After: 0 pt Formatted: Space After: 0 pt 830 formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt 838 formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Fo	829	leaching of nuclides	Prij et al. 1991	•	Formatted: Space After: 0 pt
832 dilution of mass Prij et al. 1991 Formatted: Space After: 0 pt 833 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 834 natural gas intrusion Prij et al. 1991 Formatted: Space After: 0 pt 835 gas mediated transport Prij et al. 1991 Formatted: Space After: 0 pt 836 inadequate backfill compaction, voidage Prij et al. 1991 Formatted: Space After: 0 pt 837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt	830	non-radioactive solute in geosphere	Prij et al. 1991	•	Formatted: Space After: 0 pt
833 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 834 natural gas intrusion Prij et al. 1991 Formatted: Space After: 0 pt 835 gas mediated transport Prij et al. 1991 Formatted: Space After: 0 pt 836 inadequate backfill compaction, voidage Prij et al. 1991 Formatted: Space After: 0 pt 837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt 838 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 839 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 830 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 831 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 830 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 831 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 832 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 833 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 834 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 835 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 836 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 837 dissolution/precipitation reactions Prij et al. 1991 Formatted: Space After: 0 pt 836 dissolution reacti	831	diffusion	Prij et al. 1991	•	Formatted: Space After: 0 pt
834 natural gas intrusion Prij et al. 1991 Formatted: Space After: 0 pt 835 gas mediated transport Prij et al. 1991 Formatted: Space After: 0 pt 836 inadequate backfill compaction, voidage Prij et al. 1991 Formatted: Space After: 0 pt 837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt	832	dilution of mass	Prij et al. 1991	•	Formatted: Space After: 0 pt
835 gas mediated transport Prij et al. 1991 Formatted: Space After: 0 pt 836 inadequate backfill compaction, voidage Prij et al. 1991 Formatted: Space After: 0 pt 837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt 832 Formatted: Space After: 0 pt 833 Formatted: Space After: 0 pt 834 Formatted: Space After: 0 pt 835 Formatted: Space After: 0 pt 836 Formatted: Space After: 0 pt 837 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt 832 Formatted: Space After: 0 pt 833 Formatted: Space After: 0 pt 834 Formatted: Space After: 0 pt 835 Formatted: Space After: 0 pt 836 Formatted: Space After: 0 pt 837 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt 832 Formatted: Space After: 0 pt 833 Formatted: Space After: 0 pt 834 Formatted: Space After: 0 pt 835 Formatted: Space After: 0 pt 836 Formatted: Space After: 0 pt 837 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 830 Formatted: Space After: 0 pt 831 Formatted: Space After: 0 pt 832 Formatted: Space After: 0 pt 833 Formatted: Space After: 0 pt 834 Formatted: Space After: 0 pt 835 Formatted: Space After: 0 pt 836 Formatted: Space After: 0 pt 837 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 838 Formatted: Space After: 0 pt 839 Formatted: Space After: 0 pt 830 Formatted: Space After	833	dissolution/precipitation reactions	Prij et al. 1991	•	Formatted: Space After: 0 pt
836 inadequate backfill compaction, voidage Prij et al. 1991 Formatted: Space After: 0 pt 837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt	834	natural gas intrusion	Prij et al. 1991	•	Formatted: Space After: 0 pt
837 convergence of openings Prij et al. 1991 Formatted: Space After: 0 pt	835	gas mediated transport	Prij et al. 1991	•	Formatted: Space After: 0 pt
The state of the s	836	inadequate backfill compaction, voidage	Prij et al. 1991	•	Formatted: Space After: 0 pt
838 dewatering of host rock Prij et al. 1991 Formatted: Space After: 0 pt	837	convergence of openings	Prij et al. 1991	4	Formatted: Space After: 0 pt
	838	dewatering of host rock	Prij et al. 1991	4	Formatted: Space After: 0 pt

Table 1 (cor

	Table 1 (continued)		Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	Formatted: Space After: 0 pt
	839	stress field changes	Prij et al. 1991	Formatted Table
	840	thermal effects	Prij et al. 1991	Formatted: Space After: 0 pt
1	841	Thermal	Prij et al. 1991	Formatted: Space After: 0 pt
1	842	degradation of buffer/backfill	Prij et al. 1991	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
ĺ	843	canister or container movement	Prij et al. 1991	Formatted: Space After: 0 pt
l	844	changes in in-situ stress field	Prij et al. 1991	Formatted: Space After: 0 pt
	845	readjustment of host rock along joints	Prij et al. 1991	Formatted: Space After: 0 pt
	846	heat production	Prij et al. 1991	Formatted: Space After: 0 pt
	847	fracture aperture changes	Prij et al. 1991	Formatted: Space After: 0 pt
	848	canister migration	Prij et al. 1991	Formatted: Space After: 0 pt
	849	dehydration of salt minerals	Prij et al. 1991	Formatted: Space After: 0 pt
	850	differential elastic response	Prij et al. 1991	Formatted: Space After: 0 pt
	851	material defects	Prij et al. 1991	Formatted: Space After: 0 pt
	852	swelling of backfill (clay)	Prij et al. 1991	Formatted: Space After: 0 pt
	853	swelling of corrosion products	Prij et al. 1991	Formatted: Space After: 0 pt
	854	material property changes	Prij et al. 1991	Formatted: Space After: 0 pt
	855	Mechanical	Prij et al. 1991	Formatted: Space After: 0 pt
	856	non-elastic response	Prij et al. 1991	Formatted: Space After: 0 pt
l	857	release of stored energy	Prij et al. 1991	Formatted: Space After: 0 pt
	858	Design and construction	Prij et al. 1991	Formatted: Space After: 0 pt
l	859	design modification	Prij et al. 1991	Formatted: Space After: 0 pt
	860	seal failure	Prij et al. 1991	Formatted: Space After: 0 pt
	861	subsidence, collapse	Prij et al. 1991	Formatted: Space After: 0 pt
	862	alteration of soil, surface water chemistry	Prij et al. 1991	Formatted: Space After: 0 pt
	863	Geochemical	Prij et al. 1991	Formatted: Space After: 0 pt
l	864	chemical transformations	Prij et al. 1991	Formatted: Space After: 0 pt
	865	ionic strength	Prij et al. 1991	Formatted: Space After: 0 pt
l	866	speciation equilibrium reactions	Prij et al. 1991	Formatted: Space After: 0 pt
l	867	texture	Prij et al. 1991	Formatted: Space After: 0 pt
l	868	acidity	Prij et al. 1991	Formatted: Space After: 0 pt
I	869	adsorption and desorption reactions	Prij et al. 1991	Formatted: Space After: 0 pt

	Table 1 (continued)		Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	Formatted: Space After: 0 pt
	870	chemical equilibrium reactions	Prij et al. 1991	Formatted Table
ĺ	871	counter, competitive, and potential determining ions	Prij et al. 1991	Formatted: Space After: 0 pt
	872	physico-chemical characteristics influencing chemical equilibria	Prij et al. 1991	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
	873	redox conditions	Prij et al. 1991	Formatted: Space After: 0 pt
	874	geochemical alterations	Prij et al. 1991	Formatted: Space After: 0 pt
	875	diagenesis	Prij et al. 1991	Formatted: Space After: 0 pt
	876	land slide	Prij et al. 1991	Formatted: Space After: 0 pt
	877	accidents during operation	Prij et al. 1991	Formatted: Space After: 0 pt
	878	agricultural developments and changes	Prij et al. 1991	Formatted: Space After: 0 pt
	879	anthropogenic climate changes (greenhouse effect)	Prij et al. 1991	Formatted: Space After: 0 pt
	880	abandonment of unsealed repository	Prij et al. 1991	Formatted: Space After: 0 pt
	881	poor closure	Prij et al. 1991	Formatted: Space After: 0 pt
	882	tunneling	Prij et al. 1991	Formatted: Space After: 0 pt
	883	underground construction	Prij et al. 1991	Formatted: Space After: 0 pt
	884	fisheries developments and changes	Prij et al. 1991	Formatted: Space After: 0 pt
	885	geothermal energy production	Prij et al. 1991	Formatted: Space After: 0 pt
	886	co-disposal of reactive wastes (deliberate)	Prij et al. 1991	Formatted: Space After: 0 pt
	887	Human Induced Phenomena	Prij et al. 1991	Formatted: Space After: 0 pt
	888	undetected past intrusions	Prij et al. 1991	Formatted: Space After: 0 pt
	889	injection of fluids	Prij et al. 1991	Formatted: Space After: 0 pt
	890	loss of records	Prij et al. 1991	Formatted: Space After: 0 pt
	891	archaeological investigation	Prij et al. 1991	Formatted: Space After: 0 pt
	892	irrigation	Prij et al. 1991	Formatted: Space After: 0 pt
	893	changes in land use	Prij et al. 1991	Formatted: Space After: 0 pt
	894	demographic developments and changes	Prij et al. 1991	Formatted: Space After: 0 pt
	895	urban developments and changes	Prij et al. 1991	Formatted: Space After: 0 pt
	896	post-closure monitoring	Prij et al. 1991	Formatted: Space After: 0 pt
	897	underground nuclear testing	Prij et al. 1991	Formatted: Space After: 0 pt
	898	Operation and closure	Prij et al. 1991	Formatted: Space After: 0 pt
	899	phased operation effects	Prij et al. 1991	Formatted: Space After: 0 pt

Table 1 (cor	ntinued)
--------------	----------

	Table 1 (d	continued)		Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	Formatted: Space After: 0 pt
	900	attempt of site Improvement	Prij et al. 1991	Formatted Table
	901	poor quality construction	Prij et al. 1991	Formatted: Space After: 0 pt
	902	improper waste emplacement	Prij et al. 1991	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
	903	radioactive waste disposal error	Prij et al. 1991	Formatted: Space After: 0 pt
	904	Post-closure sub-surface activities	Prij et al. 1991	Formatted: Space After: 0 pt
	905	Post-closure subsurface activities (intrusion)	Prij et al. 1991	Formatted: Space After: 0 pt
	906	Post-closure surface activities	Prij et al. 1991	Formatted: Space After: 0 pt
	907	exploitation drilling	Prij et al. 1991	Formatted: Space After: 0 pt
	908	exploratory drilling	Prij et al. 1991	Formatted: Space After: 0 pt
	909	resource mining	Prij et al. 1991	Formatted: Space After: 0 pt
	910	quarrying, surface mining	Prij et al. 1991	Formatted: Space After: 0 pt
	911	sabotage	Prij et al. 1991	Formatted: Space After: 0 pt
	912	malicious intrusion, sabotage/war	Prij et al. 1991	Formatted: Space After: 0 pt
	913	ground-water abstraction/recharge	Prij et al. 1991	Formatted: Space After: 0 pt
	914	construction of dams/reservoirs	Prij et al. 1991	Formatted: Space After: 0 pt
	915	drainage of dams reservoirs	Prij et al. 1991	Formatted: Space After: 0 pt
	916	coastal erosion development of estuaries	Prij et al. 1991	Formatted: Space After: 0 pt
	917	denudation, erosion	Prij et al. 1991	Formatted: Space After: 0 pt
	918	channel erosion	Prij et al. 1991	Formatted: Space After: 0 pt
	919	chemical denudation	Prij et al. 1991	Formatted: Space After: 0 pt
	920	channeling and preferential pathways	Prij et al. 1991	Formatted: Space After: 0 pt
	921	effects on suberosion	Prij et al. 1991	Formatted: Space After: 0 pt
	922	sediment transport	Prij et al. 1991	Formatted: Space After: 0 pt
	923	solifluction	Prij et al. 1991	Formatted: Space After: 0 pt
	924	rock heterogeneity	Prij et al. 1991	Formatted: Space After: 0 pt
	925	subrosion	Prij et al. 1991	Formatted: Space After: 0 pt
	926	flooding of repository during operation	Prij et al. 1991	Formatted: Space After: 0 pt
	927	extreme precipitation	Prij et al. 1991	Formatted: Space After: 0 pt
	928	flooding of site	Prij et al. 1991	Formatted: Space After: 0 pt
	929	changes in ground-water system	Prij et al. 1991	Formatted: Space After: 0 pt
	930	ground-water conditions	Prij et al. 1991	Formatted: Space After: 0 pt

Table 1	(continued)
i abie i	(Continued)

1	Table 1 (c	continued)		_	Formatted: Space After: 0 pt
	FEP ID	Initial FEP	Reference ¹	•	Formatted: Space After: 0 pt
	931	ground-water discharge	Prij et al. 1991	•	Formatted Table
	932	ground-water flow	Prij et al. 1991	•	Formatted: Space After: 0 pt
	933	ground-water recharge	Prij et al. 1991	+	Formatted: Space After: 0 pt Formatted: Space After: 0 pt
	934	saline-freshwater interface	Prij et al. 1991	4	Formatted: Space After: 0 pt
	935	brine migration	Prij et al. 1991	4	Formatted: Space After: 0 pt
	936	natural thermal effects	Prij et al. 1991	4	Formatted: Space After: 0 pt
	937	induced hydrological changes	Prij et al. 1991	4	Formatted: Space After: 0 pt
	938	changes in river regime, lake levels	Prij et al. 1991	4	Formatted: Space After: 0 pt
	939	intrusion of saline/fresh water	Prij et al. 1991	4	Formatted: Space After: 0 pt
	940	rechanneling of rivers	Prij et al. 1991	4	Formatted: Space After: 0 pt
	941	meandering of river	Prij et al. 1991	4	Formatted: Space After: 0 pt
	942	water table changes	Prij et al. 1991	4	Formatted: Space After: 0 pt
	943	frost weathering	Prij et al. 1991	4	Formatted: Space After: 0 pt
	944	solar insolation	Prij et al. 1991	4	Formatted: Space After: 0 pt
	945	coastal surge, storms	Prij et al. 1991	4	Formatted: Space After: 0 pt
	946	precipitation, temperature, soil, water balance	Prij et al. 1991	4	Formatted: Space After: 0 pt
	947	temperature	Prij et al. 1991	4	Formatted: Space After: 0 pt
	948	ecological response to sudden change (forest fires)	Prij et al. 1991	4	Formatted: Space After: 0 pt
	949	evolution	Prij et al. 1991	•	Formatted: Space After: 0 pt
	950	microbial interactions	Prij et al. 1991	4	Formatted: Space After: 0 pt
	951	microbiological effects	Prij et al. 1991	4	Formatted: Space After: 0 pt
	952	pedogenesis	Prij et al. 1991	4	Formatted: Space After: 0 pt
	953	gas generation, explosions	Prij et al. 1991	•	Formatted: Space After: 0 pt
	954	gas generation effects	Prij et al. 1991	4	Formatted: Space After: 0 pt
	955	radioactive decay/ingrowth	Prij et al. 1991	4	Formatted: Space After: 0 pt
	956	Radiological	Prij et al. 1991	4	Formatted: Space After: 0 pt
	957	radiolysis	Prij et al. 1991	4	Formatted: Space After: 0 pt
	958	heterogeneity of waste forms; chemical or physical	Prij et al. 1991	4	Formatted: Space After: 0 pt
	959	cellulosic degradation	Prij et al. 1991	4	Formatted: Space After: 0 pt
	960	electrochemical reactions	Prij et al. 1991	4	Formatted: Space After: 0 pt
	961	introduced complexing agents, cellulosics	Prij et al. 1991	4	Formatted: Space After: 0 pt

Table 1 (continued)

	FEP ID	Initial FEP	Reference ¹	
	962	material interactions	Prij et al. 1991	
l	963	redox potential, pH	Prij et al. 1991	•
1	964	induced chemical changes	Prij et al. 1991	•
	965	diapirism, halokinesis	Prij et al. 1991	•
	966	fault activation	Prij et al. 1991	•
l	967	fault generation	Prij et al. 1991	•
	968	fracturing	Prij et al. 1991	•
	969	metamorphic activity	Prij et al. 1991	•
	970	changes in magnetic field	Prij et al. 1991	•
	971	creep of rock	Prij et al. 1991	•
	972	uplift and subsidence	Prij et al. 1991	•
	973	seismicity	Prij et al. 1991	•
	974	undetected geological features	Prij et al. 1991	•
	975	plate tectonics	Prij et al. 1991	•
	976	undetected features	Prij et al. 1991	•
	977	magmatic activity	Prij et al. 1991	•
	978	nuclear criticality	Prij et al. 1991	•
1	979	inadvertent inclusion of undesirable materials	Prij et al. 1991	-
1	980	radon emanation	Neptune	-
l	981	resuspension	Neptune	-

-References for Andersson et al. (1969), Burkholder (1960), Guzowski (1990), Hertzler and Atwood (1969),	
Hunter (1983), Hunter, (1989), IAEA (1983), Koplik et al. (1982), Merrett and Gillespie, NEA (1992) and Prij et al.	
(1991) were found in Guzowski and Newman (1993).	

Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted Table	
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt
Formatted: Space After:	0 pt

Formatted: Font: 9 pt, Superscript
Formatted: Space After: 0 pt
Formatted: Font: 9 pt

Table 2. List of consolidated FEPs evaluated for inclusion in the conceptual site model and scenarios

scena	rios				
Table 2 (continue Neptune Subgroup	Normalized FEP	Discussion	Representative 4		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	(accepted)		FEP IDs 1		space between paragraphs of the same style Formatted: Superscript
Climate change	climate change	Climate change can have a large influence on site performance. Climate change includes natural and anthropogenic changes and its effects on hydrology (including lake effects), hydrogeology, glaciation, biota, and human behaviors.	2, 3, 4, 159, 221, 4 222, 252, 253, 254, 321, 349, 350, 416, 417, 519, 520, 521, 522, 523, 524, 651, 652, 653, 811, 812, 813, 814		Formatted: Superscript Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	lake effects	A large lake could have detrimental effects on the repository. Lake effects include appearance/ disappearance of large lakes and associated phenomena (sedimentation, wave action, erosion/inundation, isostasy). This is covered within climate change scenarios. Regulations suggest consideration.	656, 789		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	wave action	Wave action, including seiches, could influence site performance and is included in long-term scenarios. See lake effects and erosion/inundation.	224, 790		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Containerization	containment degradation	A number of processes can contribute to degradation of waste containment. These are accounted for in release of the source term. It is expected that no credit will be given to containment. Regulations suggest consideration.	7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 352, 496, 527, 657, 658, 817, 818, 819, 820		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	corrosion	Corrosion is one of the processes that would contribute to degradation of waste containment. Regulations suggest consideration.	18, 19, 20, 161, 353, 419, 659, 821	***************************************	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Contaminant Migration	biotically- induced transport	Plant uptake and burrow excavation are potential contaminant transport (CT) pathways. Modeling includes biotic (plant- and animal-mediated) processes leading to contaminant transport, and the evolution of these processes in response to climate change and other influences, including bioturbation, burrowing, root development, and contaminant uptake and translocation. Regulations suggest consideration.	21, 420, 529, 530, 531, 532, 533, 534, 661, 662, 663, 664, 665, 791, 822		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	colloid transport	Colloid formation could be a CT pathway. This process will be considered in the geochemistry conceptual model.	22, 23, 24, 535, 4 666, 823		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Table 2 (contii Neptune	Normalized	Discussion	Representative		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Subgroup	FEP (accepted)	Discussion	FEP IDs ¹		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	,	OT : I			Formatted: Superscript
	contaminant transport	CT is a large class of processes that govern the migration of contaminants in the environment, including transport media (water, air, soil) processes (advection-dispersion, diffusion, plant uptake, soil translocation) and partitioning between phases; much overlap with atmospheric, groundwater, surface water, and biotically-induced transport. Regulations suggest consideration.	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 162, 163, 257, 301, 302, 303, 304, 305, 323, 354, 355, 356, 421, 536, 537, 538, 539, 540, 667, 668, 669, 670, 671, 672, 673, 824, 825, 826, 827, 828, 829, 830		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	diffusion	Diffusion is a basic CT process that could affect performance. Diffusion occurs in gas and water phases.	36, 306, 324, 674, 831		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	dilution	Dilution is a basic CT process that could affect performance. Dilution occurs when mixing with less concentrated water.	37, 675, 832		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	dispersion	Dispersion is a basic CT process that could affect performance. Hydrodynamic dispersion is associated with water advection.	38		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	dissolution	Dissolution will govern leaching of the waste form into water, limited by aqueous solubility.	39, 40, 164, 225, 258, 325, 326, 422, 541, 676, 833		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	dust devils	Dust devils are common on the flats, and could disperse contaminants. These are included in atmospheric dispersion.	792		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	gas transport	Radon produced in the waste is likely to be transported via gaseous diffusion. Transport in the gas phase includes gas generation in the waste, partitioning between air and water phases, diffusion in air and water, and radioactive decay and ingrowth.	42, 43, 44, 165, 166, 259, 357, 423, 542, 543, 544, 678, 679, 835		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	infiltration	Infiltration through the cap materials, the waste, and unsaturated zone could be an important CT mechanism. This includes infiltration of meteoric water (precipitation minus abstractions) through the cap, into wastes, and potentially to the groundwater.	45, 260, 307	4	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	local geology	This feature will control some aspects of CT and is included implicitly in other processes. Regulations suggest consideration.	545, 546, 547	1	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Table 2 (contin	nued)			4	Formatted: Space After: 0 pt, Don't add
Neptune Subgroup	Normalized FEP (accepted)	Discussion	Representative 4 FEP IDs.1		space between paragraphs of the same style Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
		Dreferential nothways sould contribute to CT			Formatted: Superscript
	preferential pathways	Preferential pathways could contribute to CT. Their presence is accounted for in the definition of advective and diffusive processes. Regulations suggest consideration.	46		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Engineered Features	compaction error	Inadequate compaction could result in subsidence. This overlaps with subsidence and closure failure.	680, 836		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	engineered features	Many engineered features are intended to improve performance. This large collection of features is intended to promote containment and inhibit migration of contaminants. Regulations suggest consideration.	48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 167, 168, 169, 170, 226, 227, 228, 261, 308, 309, 327, 359, 360, 361, 362, 363, 425, 426, 427, 428, 429, 430, 431, 432, 497, 498, 548, 549, 550, 551, 552, 553, 554, 555, 681, 682, 683, 684, 685, 686, 687, 688, 689,690	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	material properties	Material properties are an essential feature of any model, and include density, porosity, hydraulic conductivity, permeability, texture, tortuosity, etc. of waste, backfill, cap materials, and naturally occurring materials.	60, 61, 62, 171, 364, 433, 692, 852, 853, 854		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	repository design	Respository design clearly influences its performance. This is accounted for implicitly in the modeling of the repository. Regulations suggest consideration.	695, 696, 858, 859	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	source release	Source release is an essential part of the model, and can result from many mechanisms, including containment failure, leaching, radon emanation, plant uptake, and translocation by burrowing animals.	128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 196, 291, 342, 398, 467, 468, 637, 770, 771, 772, 773, 774, 775, 958, 959, 960, 961, 962, 963, 964	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Table 2 (conti				_	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Neptune Subgroup	Normalized FEP (accepted)	Discussion	Representative 4 FEP IDs. 1	\	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	subsidence of	Subsidence can compromise performance,	310, 311, 329,	1	Formatted: Superscript
	repository	leading to failure of the cap, and enhanced infiltration. Regulations suggest consideration.	439, 861		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	waste	Waste form and inventory are essential parts of the model. Inventory and source release includes initial inventory of radionuclides and its physical and chemical form, container performance, matrix performance, leaching, and other release mechanisms.	517, 647, 648, 649		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same styl
Exposure	animal ingestion	Human ingestion of livestock and game exposed to contaminants is an exposure pathway, and is implemented as part of the human exposure model, as ingestion of fodder and feed by livestock, and ingestion of livestock by humans, and similar pathways for game. Regulations suggest consideration.	660		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same styl
	dosimetry	Dosimetry hints at human dose response, which is an integral part of PA. Physiological dose response will be estimated in the PA model. Dosimetry as a science is not a FEP, <i>per se</i> . Regulations suggest consideration.	560, 561	_	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same styl
	exposure media	Exposure media are a fundamental part of exposure pathways, and include foodstuffs, drinking water, other environmental media. These are included in the human exposure model. Regulations suggest consideration.	562, 563		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same styl
	human behavior	Behavior is part of human exposure pathway. Future human behaviors include activities and their frequency and duration, distinct from food and water ingestion. Regulations suggest consideration.	584, 585, 586, 587, 588		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same styl
	human exposure	Human exposure, in terms of dose and toxicity, is considered in the model, and includes exposure pathways (ingestion, inhalation, etc.) and physiological effects from radionuclides and toxic contaminants. Regulations suggest consideration.	68, 564, 565, 566, 567, 568, 569, 570, 571, 801, 802		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same styl
	ingestion pathways	Ingestion of food, water, and soils are modeled human exposure pathways. These include human exposures due to ingestion of water and foodstuffs, and transport pathways (e.g. food chains) that lead to foodstuffs. Regulations suggest consideration.	572, 573, 574		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same styl

Neptune Subgroup	Normalized FEP (accepted)	Discussion	Representative 4 FEP IDs ¹		space between paragraphs of the same style Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	• • •				Formatted: Superscript
	inhalation pathways	Inhalation of gases and fine particles are modeled human exposure pathways. Regulations suggest consideration.	794		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Geochemical	geochemical effects	Geochemical processes control CT in waste sources, water, and geologic media. These include chemical sorption and partitioning between phases, aqueous solubility, precipitation, chemical stability, complexing, changes in water chemistry (redox potential, pH, Eh), fluid interactions, halokinesis, diagenesis, speciation, cellulosic degradation effects, interactions with clays and other host materials, effects of corrosion products, effects of cementitious materials, and leaching.	69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 174, 264, 368, 440, 575, 576, 577, 698, 699, 700, 701, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Human Processes	anthropogenic climate change	This is addressed as part of climate change in general.	85, 580, 706, 879		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	community development	Development of communities and other human habitation overlaps with land use and habitation, and is considered in the human exposure assessment, albeit unlikely. See inhabitation, land use. Regulations suggest consideration.	581		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	excavation	Excavation includes construction of basements and other construction, and is included as part of the human intrusion scenarios.	330, 499, 582, 709, 710, 882, 883	4	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	explosions	Human-caused explosions include bombs, plane crashes, and conventional weapons training.	230, 500, 583, 804	-	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	human-induced processes	Human-induced processes are limited to repository design, inadvertent human intrusion, or human-induced climate change. Engineered features include repository design and new technological developments. Intentional intrusion is not considered. Anthropogenic climate change is considered under climate change.	90, 91, 92, 177, 271, 272, 372, 443, 589, 590, 712, 713, 886	4	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	human-induced transport	Human activities that could contribute to release are considered. Humans can induce contaminant transport through a variety of activities. See inadvertent human intrusion.	273, 274, 591, 592, 795, 887		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	inadvertent human intrusion	Inadvertent human intrusion into the waste is considered in the development of exposure pathways. Regulations suggest consideration.	178, 179, 231, 275, 276, 277, 373, 374, 375, 444, 445, 446, 714, 805, 806, 888	4	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Table 2 (continue Neptune	Normalized	Discussion	Representative -	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
Subgroup	FEP (accepted)			Formatted: Space After: 0 pt, Don't add space between paragraphs of the same sty	
	inhabitation	Inhabitation on or near the site, including the	93, 94, 593, 594,	Formatted: Superscript	
	imabilation	establishment of surface or underground dwellings, communities, or cities, is extremely unlikely. See community development, land use. Regulations suggest consideration.	807	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	institutional control	Institutional control affects human exposures, and includes records of site knowledge, markers, barriers, and security, and the loss thereof. Regulations suggest consideration.	95, 595, 596, 597, 716, 890	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	land use	Land use in general could affect exposure scenarios. Land use changes are related to demographics, including development of agricultural, industrial, urban, or wild land uses. Regulations suggest consideration.	183, 450, 600, 601, 602, 719, 720, 893, 894, 895	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	post-closure subsurface activities	Subsurface human activities are covered to the extent that they are inadvertent. This could include intrusion, construction, investigation, drilling, or mining. Regulations suggest consideration.	727, 904, 905, 906	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
Hydrogeological	denudation	Denudation could expose wastes, and is combined with erosion and inundation. Regulations suggest consideration.	192, 388, 460, 502, 503, 739, 917	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	erosion	Erosion of the repository resulting from pluvial, fluvial, or aeolian processes can result from extreme precipitation, changes in surface water channels, and weathering. Regulations suggest consideration.	110, 238, 284, 389, 504, 613, 740, 918, 919, 920, 921	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	erosional transport	Erosional (sediment) transport could be a CT mechanism. Sediments may move during erosion; includes solifluction. Regulations suggest consideration.	111, 239, 614, 615, 741, 742, 922, 923	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	hydrogeological effects	Hydrogeological and groundwater hydraulics changes may occur in response to geological changes, including hydrothermal activity. This is generally covered under groundwater transport. Regulations suggest consideration.	112, 616, 617, 618, 619, 743, 744, 796, 924	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	sedimentation	Sedimentation would occur on a lake bottom, and could affect performance. This includes sedimentation/aggradation onto the repository.	113, 193, 285, 335, 390, 461, 621, 797	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	

Table 2 (continu				Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Neptune Subgroup	Normalized FEP (accepted)	Discussion	Representative 4 FEP IDs ¹	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Hydrology	groundwater transport	Groundwater transport includes waterborne contaminant transport (CT) in the unsaturated and saturated zones, and is a principal CT mechanism. Groundwater flow and transport mechanisms include advection-dispersion, diffusion, fluid migration, waterborne contaminant transport, changes in the flow system, recharge and discharge, water table movements, and brine interactions.	114, 115, 116, 117, 118, 286, 312, 313, 314, 315, 316, 336, 337, 338, 339, 392, 393, 622, 623, 747, 748, 749, 750, 751, 752, 929, 930, 931, 932, 933, 934, 935, 942	Formatted: Superscript Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	hydrological effects	Hydrological processes are considered under the topics of surface water and groundwater. Regulations suggest consideration.	463, 505, 624, 753, 754, 936, 937	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	inundation	Inundation by a large lake or reservoir is likely to affect the site in the long term. (See also: wave action, and lake effects). Regulations suggest consideration.	755, 798, 938, ••• 939	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Meteorology	frost weathering	Weathering from frost cycles is included in cap degradation modeling.	758, 943	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	meteorology	Meteorology is considered indirectly; meteorology as a science is not a FEP, per se, but contributes to other processes, such as precipitation and atmospheric dispersion, which are covered elsewhere. Regulations suggest consideration.	626, 627, 761, 946, 947	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	resuspension	Resuspension will affect site performance, allowing particulates from surface soils to be redistributed by atmospheric dispersion.	981	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	atmospheric dispersion	Atmospheric dispersion is a potential CT pathway and is modeled. See also: dust devils. Regulations suggest consideration.	256, 528	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	tornado	Tornados are possible in the area.	289	Formatted: Space After: 0 pt, Don't add
Model Settings	model parameteri- zation	Parameterization is a fundamental part of modeling, though is not a FEP, per se.	628	space between paragraphs of the same style Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	period of performance	Definition of a period of performance is a fundamental part of PA modeling, though is not a FEP, per se.	629	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	regulatory requirements	Regulatory requirements drive much of the modeling in PA, though is not a FEP, per se.	630	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	spatial domain	Definition of a spatial domain is a fundamental part of modeling, though is not a FEP, per se.	631	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Table 2	(continued	ı١
I able 2	ıconunucu	•

Neptune Subgroup	Normalized FEP (accepted)	Discussion	Representative 4 FEP IDs
Other Natural Processes	ecological changes	Changes in the types and abundance of plants and animals could affect performance. Changes in the ecology can be associated with catastrophic events (e.g. fire, inundation), evolution, or climate change.	762, 948, 949
	gas generation	Uranium wastes are expected to produce radon which will affect site performance in terms of doses. See also gas transport.	122, 123, 340, 396, 464, 634, 766, 953, 954
	pedogenesis	Soils are likely to develop on the cap and may affect performance.	765, 952
	radioactive decay and in- growth	Radioactive decay and ingrowth processes are essential to the model.	635, 767, 799, 955
	radon emanation	Radon emanation directly affects the mass of radon released into the environment, and hence site performance.	980
	reconcentration	Possible reconcentration of radiological materials during transport is accounted for in the CT modeling.	127
Tectonic/ Seismic/ Volcanic	geophysical effects	Geophysical changes to the engineered features of the site are accounted for in degradation. Geophysical effects include pressure, stress, density, viscosity, deformation, magnetics, creep, and elasticity.	141, 142, 143, 509, 641, 781, 970, 971

Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Formatted: Superscript

Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Formatted: Font: 9 pt

Formatted: Don't add space between

paragraphs of the same style

Formatted: Font: 9 pt, Superscript

Formatted: Font: 9 pt

 $\label{thm:consideration:thm:consideration} \textbf{Table 3. List of FEPs dismissed from further consideration.}$

Table 3 (continu Neptune	Normalized	Discussion	Representative	-	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Subgroup	FEP (dismissed)	Discussion	FEP IDs.1		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Celestial	meteorite	The occurrence and consequences of a direct	1, 158, 219, 220,		Formatted: Superscript
Celestiai	impact	hit by a meteorite are out of the scope of this model.	251, 320, 348, 415, 491, 492, 493, 518, 650, 810		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Climate change	glacial effects	Glacial effects include presence of continental glaciers and resulting isostatic effects, glacial erosion, and periglacial effects. Glaciers in the basin are not modeled. Return of a large lake is expected should a glacial epoch return and is covered within climate change scenarios.	5, 160, 223, 255, 322, 351, 418, 494, 495, 525, 526, 654, 655, 815, 816		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	permafrost	The effects of permafrost are bounded by those of cap degradation, which considers more damaging freeze/thaw cycles. See frost weathering.	6, 300		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Contaminant Migration	gas intrusion	No mechanism for intrusion of naturally- produced gases into the repository has been identified.	41, 677, 834		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Engineered Features	convergence of openings	This FEP applies to mined repositories only.	837	4	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	design error	Errors in design could compromise performance but are not included in the modeling. Design error is distinct from construction or operational error.	47, 358, 424	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	material defects	Material defects are covered by degradation, and include material defects in source containment, closure cap, and other engineered materials.	691, 851	_	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	mechanical effects	Mechanical effects are covered implicitly by degradation, and include changes in mechanical properties and conditions, including failure.	63, 64, 65, 172, 262, 365, 366, 434, 435, 556, 557, 693, 694, 855, 856		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	release of stored energy	No significant energy is stored within the wastes.	66, 436, 857	_	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	repository seals	Regulations suggest consideration, but, the sealing of the repository shafts, boreholes, and construction and failure of such is applicable only to mined repositories.	67, 173, 229, 263, 328, 367, 437, 438, 558, 559, 697, 860		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Neptune	Normalized	Discussion	Representative	•	space between paragraphs of the same style
Subgroup	FEP (dismissed)		FEP IDs.1		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Exposure	agriculture	Agriculture includes establishment, evolution,	705, 803, 878		Formatted: Superscript
Exposure	agnounce	and abandonment of agriculture and aquaculture at and near the site. Regulations suggest consideration, however, none of these are expected to occur because of the high salinity of soils and groundwater at the site.	700, 000, 070		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Geological	diagenesis	Diagenesis in local lacustrine sediments could include the formation of interstitial evaporites, but is not expected to change site performance.	83, 175, 265, 369, 441, 578, 702, 875	-	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	gas or brine pockets	No gas or brine pockets have been identified below the site.	176, 370, 442, 579		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	landslide	Regulations suggest consideration, but landslides are not expected to occur in the flat lacustrine basin. Mass wasting of the site itself is covered under erosion.	266, 703, 876	4	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	local subsidence	Geological subsidence in the area is unlikely to seriously affect performance, and is not expected in the basin of lacustrine sediments.	267	-	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Human Processes	accidents during operations	Regulations suggest consideration, but operational performance is not within the scope of the PA model.	84, 704, 877		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	climate control	No climate control at the facility is assumed. Climate control is a feature of certain mined repositories.	268, 371	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	closure failure	Regulations suggest consideration; however, poor closure includes abandonment or other failure to close the facility as planned, and is not modeled.	86, 87, 707, 708, 880, 881	-	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	fire	The waste is not combustible or explosive. Fires in the waste itself or following explosions are distinct from wildfire.	269, 270	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	fisheries	Regulations suggest consideration, but development of fisheries is not credible at the site.	884	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	geothermal energy production	No geothermal resources are identified at the site.	89, 711, 885	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	injection wells	Given the regional history, the construction of injection wells nearby for disposal of liquid wastes is possible. The effect of drilling such wells in the vicinity would be negligible, however.	232, 715, 889		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

Tabl	 (continu	/\

Neptune	Normalized			space between paragraphs of the same style
Subgroup	FEP (dismissed)		FEP IDs.1	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	intentional	Intentional intruders are not protected and are	96, 180, 181,	Formatted: Superscript
	intrusion	not modeled as receptors. Intentional intrusion includes exhumation of waste, sabotage, terrorism, or archeological research.	278, 376, 377, 447, 448, 717, 808, 891	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	investigation	Site investigation is considered intentional, and receptors are not covered.	598, 599, 809	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	irrigation	Regulations suggest consideration, and irrigation could affect site performance, but will not occur since there is no suitable water source.	182, 233, 378, 449, 718, 892	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	monitoring	Monitoring of the site is required, but persons performing the activity are not protected since it is intentional and informed. Monitoring activities will not affect the performance of the site.	97, 603, 721, 896	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	nuclear testing	Regulations suggest consideration; however, testing of nuclear devices underground, at the ground surface, or in the atmosphere is considered intentional disruption of the site and is not covered.	98, 722, 897	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	operational effects	Operations could affect performance, and include normal site operation, closure, and later attempts at site improvement. Regulations suggest consideration; however, operations are not part of the PA.	99, 604, 605, 723, 724, 898, 899, 900	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	operational error	Covered under operational effects. Operational errors include poor quality site construction, waste emplacement, and site closure. Regulations suggest consideration, however, operations are not part of the PA.	100, 184, 279, 379, 380, 451, 725, 726, 901, 902, 903	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	quality control	Quality control is important to site operations, but is not a FEP that lends itself to modeling.	606	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	resource extraction	Regulations suggest consideration. Resource extraction is a type of intentional intrusion, including drilling, mining, or quarrying into the repository, or in such a way as to affect performance, in search of resources such as petroleum, natural gas, salt, rock, or geothermal resources. See intentional intrusion.	101, 102, 103, 185, 186, 234, 235, 280, 331, 332, 381, 382, 383, 452, 453, 501, 608, 609, 728, 729, 730, 731, 907, 908, 909, 910	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	sabotage	Sabotage is by its nature intentional. See intentional intrusion.	104, 187, 333, 384, 454, 732, 733, 911, 912	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

I ahla 3 /	continue	41

Neptune	Normalized	Discussion	Representative	-	space between paragraphs of the
Subgroup	FEP (dismissed)		FEP IDs		Formatted: Space After: 0 pt space between paragraphs of the
	unplanned events	This category is too vague to be considered explicitly; unplanned events are generally subsumed by other FEPs.	610		Formatted: Superscript Formatted: Space After: 0 pt space between paragraphs of the space bet
	war	Intrusion or disruption as part of an act of war would be intentional. See intentional intrusion.	105, 188, 334, 385, 455		Formatted: Space After: 0 pt space between paragraphs of the
	waste recovery	Regulations suggest consideration, but waste recovery, retrieval, or mining are considered intentional acts. See intentional intrusion.	106, 189, 386, 456, 607.734, 735	-	Formatted: Space After: 0 pt space between paragraphs of the
	water resource management	Water resource activities include construction of dams, reservoirs, and wells, and could affect the site as water is extracted or retained. Regulations suggest consideration; however, this is not specifically modeled, as it is bounded by the large lake scenario.	107, 108, 109, 190, 236, 237, 281, 282, 387, 457, 458, 611, 736, 737, 913, 914, 915	_	Formatted: Space After: 0 pt space between paragraphs of the
	weapons testing	Any nuclear and conventional weapons testing would be done with cognizance of the site, and is intentional. See also explosions and intentional intrusion.	191, 283, 459	4	Formatted: Space After: 0 pt space between paragraphs of the space between paragraphs of the space between paragraphs of the space between paragraphs of the space and space between paragraphs of the space and space are space as the space and space are space as the space are space are space as the space are space are space as the space are space as the space are space as the space are space as the space are space as the space are space as the space are space are space as the space are space as the space are space as the space are space as the space are space as the space are space as the space are space as the space are space as the space are space as the space are space are space as the space are space are space as the space
Hydrogeological	subrosion	No subsurface erosion has been reported in the vicinity.	925	_	Formatted: Space After: 0 pt space between paragraphs of the
Hydrology	flooding	Regulations suggest consideration; however, temporary flooding of the site due to extreme precipitation is not plausible due to site topography in the midst of the flats. This is distinct from inundation by the return of a large lake, which is included.	194, 240, 391, 462, 746, 926, 927, 928	4	Formatted: Space After: 0 pt space between paragraphs of the
	surface water transport	Surface water transport includes formation and changes in rivers, lakes, and streams, and transport of dissolved and suspended solids, and sediments. Such effects are not anticipated at the facility. This is distinct from inundation by the return of a large lake, which is included.	119, 241, 287, 317, 318, 319, 394, 395, 625, 756, 757, 940, 941	_	Formatted: Space After: 0 pt space between paragraphs of the
Marine	coastal processes	Coastal processes will not apply at the site, since no sea or ocean is expected in relevant time frames. However, see wave action.	612, 738, 760, 916, 945	4	Formatted: Space After: 0 pt space between paragraphs of the
	hurricanes	No hurricanes occur in the area.	242, 288		Formatted: Space After: 0 pt
	insolation	Insolation (the amount of sunshine on the site) has no direct effect on site performance. See ecological changes.	759, 944	\	space between paragraphs of the Formatted: Space After: 0 pt space between paragraphs of the s

Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

pt, Don't add the same style

pt, Don't add f the same style

pt, Don't add f the same style

pt, Don't add the same style

pt, Don't add f the same style

pt, Don't add the same style

pt, Don't add the same style

pt, Don't add the same style

pt, Don't add f the same style

pt, Don't add f the same style

pt, Don't add the same style

pt, Don't add the same style

Table 3 (continue	•				Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Neptune Subgroup	Normalized FEP (dismissed)	Discussion	Representative 4 FEP IDs.		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	marine effects	Marine processes will not apply at the site, since			Formatted: Superscript
	manne enects	frames. Marine processes will not apply at the site, since no sea or ocean is expected in relevant time frames. Marine processes include sea-level change. See also coastal processes and tsunami.	020, 743		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	tsunami	No tsunami will occur at the site. See coastal processes and marine effects.	243	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Natural Processes	microbial effects	Microbial action is not expected to affect performance. Microbial processes include corrosion, changes in chemistry, and dissolution of glasses, but biotically-induced transport is limited to macrobiological processes.	120, 632, 633, 763, 764, 950, 951		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	radiological effects	Regulations suggest consideration. Radiological processes such as radiolysis are a concern for waste containment in some geological repositories, but are not modeled here, since waste containment is not given credit.	124, 125, 126, 195, 341, 397, 465, 466, 636, 768, 769, 956, 957	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	wildfire	Occasional wildfire (brush fire, forest fire, either local or widespread) is not likely to affect site performance in the long run, since this is a natural part of plant community dynamics.	290		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Source Release	electrochemical effects	Electrochemical effects are not a relevant process at the site. Electrochemical reactions are a concern for the SKB repository.	121		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	explosions	Explosive gases are not present in the repository.	88		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
Tectonic/ Seismic/ Volcanic	breccia pipes	Regulations suggest consideration, and the formation of breccia pipes or mud volcanoes could affect performance, but is considered highly unlikely.	197, 343, 399, 469	4	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	diapirism	Salt deposits in the strata below the site will not result in the formation of diapirs.	198, 244, 292, 344, 400, 470, 638, 776, 965		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	discontinuities	No major geological discontinuities are envisioned at the site.	639	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style
	earthquake	Earthquakes, either from natural or man-made causes, would not change the performance of this shallow unconsolidated site.	138, 293		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style

_ !	lab	le 3	(con	tinued	((

Table 3 (continued)			-	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style		
Neptune Subgroup	Normalized FEP (dismissed)	Discussion	Representative 4 FEP IDs.1		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	faulting	Faulting is unlikely to significantly affect	139, 199, 200,	1	Formatted: Superscript	
		performance of this shallow unconsolidated site and is not explicitly modeled. Geologic faulting includes all type of faults, shear zones, diastrophism, existing and future. See also see fracturing.	201, 245, 294, 345, 401, 402, 471, 472, 473, 506, 507, 508, 777, 778, 966, 967	_	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	fracturing	Tectonic fracturing will not affect unconsolidated site performance.	202, 203, 204, 205, 246, 403, 474, 475, 476, 477, 779, 968		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	geological intrusion	Magmatic and intrusive igneous activity has not been identified in the vicinity of the site. Geological intrusion includes dikes, intrusive and magmatic activity, and metamorphism due to such activity. This is distinct from breccia pipes (mud volcanoes) and human intrusion.	140, 206, 207, 295, 346, 404, 405, 478, 479, 640, 780, 969		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	hydraulic fracturing	Hydraulic fracturing is performed in solid rock, and has no application at the site. Hydraulic fracturing ("hydrofracking") is induced by humans to enhance resource recovery or liquid waste disposal by injection.	208, 480		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	intrusion into accumulation zone in the biosphere	No accumulation zone in the biosphere has been identified at the site.	144		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	isostatic effects	Isostatic changes could influence lake levels, which are accounted for elsewhere. Isostasy includes that caused by tectonics, large bodies of water, and by continental glaciers.	209, 406, 481, 510, 511		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	lava tubes	No lava tubes exist at the site or are expected in the future.	210, 407, 482		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	orogeny	No significant orogeny is expected in relevant time frames. Orogeny (mountain-building) caused by tectonic movements or regional uplift.	211, 247, 296, 408, 483	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	regional subsidence	Regional subsidence could influence lake levels, which are accounted for elsewhere.	145, 409, 782, 972	•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	seismic effects	Regulations suggest consideration, but effects of seismic activity (see also earthquakes) would be insignificant for shallow land burial.		•	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	

T	~ / .		
Table	3 IC	ontin	near

	Table 3 (continued)				Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
Neptune Subgroup	Normalized Discussion FEP (dismissed)	Representative 4 FEP IDs.1		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style		
	tectonic effects	Tectonic effects could influence lake levels,	146, 147, 148,	_	Formatted: Superscript	
	tectoriic eriects	which are accounted for elsewhere.	140, 147, 148, 149, 212, 213, 410, 484, 643, 644, 784, 785, 974, 975, 976		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	volcanism	No significant volcanism is expected in relevant time frames.	150, 214, 249, 250, 411, 412, 485, 486, 514, 515, 516, 645, 786, 800, 977	_	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
Waste	nuclear criticality	Nuclear criticality, while a concern for repositories of used nuclear fuel, is not a concern at this LLW site.	151, 152, 215, 297, 347, 413, 487, 646, 787, 978		Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
	other waste	The current analysis is constrained to examine depleted uranium wastes only, including associated "contaminant" waste. This rather vague reference to "other waste" will be addressed as the scope of wastes under consideration expands.	153, 154, 155, 156, 157, 216, 217, 218, 298, 299, 414, 488, 489, 490, 788, 979	_	Formatted: Space After: 0 pt, Don't add space between paragraphs of the same style	
4	The Representative FEP IDs correspond to the FEP IDs given in Table 1.			/	Formatted: Superscript	
+ <u>I The Representation</u>	we FEP IDS correspond to the FEP IDS given in Table 1.				Formatted: Don't add space between paragraphs of the same style	